• Title/Summary/Keyword: Turbine Impeller

Search Result 91, Processing Time 0.034 seconds

Measurement of the Velocity field of Rotor-Stator in a Centrifugal Turbine Pump by Using PIV (PIV를 이용한 터빈펌프의 동${\cdot}$정익 속도장 계측)

  • Im, Yu-Cheong;Seo, Min-Sik;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.11-18
    • /
    • 1998
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to rotor-stator region within centrifugal turbine pump. Six different kinds of rpm(120, 500, 1000, 1500, 2000 and 2500) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. Fine optical setup deeply concerned with PIV performance is arranged for accurate PIV measurement of high-speed complex flow. The instantaneous and time-mean velocity distribution and velocity profile are represented quantitatively at the rotor and stator region.

  • PDF

Measurement of the Velocity Field of Rotor-Stator in a Centrifugal Turbine Pump Using PIV (PIV를 이용한 터빈펌프의 동${\cdot}$정익 속도장 계측)

  • Im, Yu-Cheong;Seo, Min-Sik;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.35-42
    • /
    • 1999
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to rotor-stater region within centrifugal turbine pump. Six different kinds of rpm(120, 500, 1000, 1500, 2000 and 2500) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented with direct calculation of correlation coefficients. Fine optical setup concerned with PIV performance is arranged for the accurate PIV measurement of high-speed complex flow. The instantaneous and time-mean velocity distribution and velocity profile are represented quantitatively at the rotor and stator region.

  • PDF

The Study of Flow Rate Performance and Engine Application with LPG Composition Rate for LPi Fuel Supplying System Consisted of Turbine Type Pump (터빈방식 연료펌프로 구성된 LPi 연료공급 시스템의 LPG 조성비에 따른 토출성능 및 엔진적용성에 관한 연구)

  • Lim, Mu-Chang;Myung, Cha-Lee;Park, Sim-Soo;Park, Jeong-Nam;Kim, Sung-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.99-105
    • /
    • 2007
  • Currently, BLDC fuel pump was applied on LPi vehicle using 3rd fuel supply system as liquified phase LPG injection method had already shown better performance than others. Its cost, however, is rather expensive because of drawbacks such as complicated structure, a fault of localization of system. In this work, demonstration system for a developed turbine type fuel pump to replace BLDC system was setup and investigated. This study results that fuel mass flow rate of turbine type pump and injection performance of injector were better compared to BLDC type. Comparing flow rate of summer LPG with that of winter LPG, the flow rate decreased about 25% using winter LPG. Performance applying turbine type LPi fuel pump to engine is confirmed.

The study of flow structure in a mixing tank for different Reynolds numbers using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1806-1813
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements (Hill et $al.^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et $al.^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the nondimeansional eddy viscosity, resolve scale and subgrid scale dissipations is clearly shown in this study.

  • PDF

A Study on the Improvement of Surface Roughness of Impeller by Selection of Tool Path and Posture and Control of Feedrate (공구경로 및 자세의 선정과 이송률 제어를 통한 임펠러 표면조도 개선에 관한 연구)

  • Hwang, Jong-Dae;Oh, Ji-Young;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1088-1095
    • /
    • 2008
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of tool path, tool posture, feedrate control at a tool tip and post-processing. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various tool paths, tool postures, and feedrate types. Machining experiment on AL7075 for impeller is performed to define suitable machining condition, and measurement of surface roughness on machined surfaces depended on each machining condition is performed. By defining suitable machining condition, we should have conclusion as improving the surface quality in the aspect of surface roughness and machined shape of surface.

The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.

Study on performance prediction of centrifugal compressor with diffuser angle and rotational speed change (원심압축기의 디퓨져 각도조절과 회전수변경에 따른 성능예측에 관한 연구)

  • Park, Y.H.;Shim, Y.H.;Kim, C.S.;Cho, S.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.55-62
    • /
    • 2012
  • Centrifugal compressors are widely used and each operating condition is different. However, it cannot be manufactured according to the every operating condition. In the this study, performance of compressor was evaluated with various rotational speeds of impeller and various stagger angles of diffuser in order to apply a typical model widely. A centrifugal compressor was designed and manufactured based on the design point. On this machines, an experiment was conducted and the performance was predicted at off-design point. The performance prediction was validated with the experimental result and the numerical result. Although the isentropic efficiency on the prediction was slightly lower than that on the experimental result due to the heat loss in the experiment, the pressure ratio was predicted well and also the predicted results were matched well with the numerical results. When the rotational speed of the impeller and the stagger angle of the diffuser were changed together, the compressor can be worked in the high efficiency region and avoided operating in the stall region.

A Study on Aerodynamic Design and Flow Characteristics of a Centrifugal Compressor for SOFC-Gas Turbine Hybrid System (SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구)

  • Choi, Jae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.284-291
    • /
    • 2008
  • This study presents an aerodynamic design and numerical analysis of a centrifugal compressor in gas turbines for SOFC-gas turbine hybrid system application. Total-to-total pressure ratio of the compressor is 3.6:1 that could be used widely for small and large SOFC-gas turbine systems. The compressor consists of a centrifugal impeller and a wedge diffuser. Conceptual design and aerodynamic design with mean line analysis and quasi-3D analysis are performed, and aerodynamic parameters as well as design variables are discussed from the design results. A numerical analysis based on the Reynolds-averaged Navier-Stokes equation was performed for the flow analysis of the compressor. The results show that the centrifugal compressor designed meets the design target, and the aerodynamic parameters and results of the compressor can be used for the aerodynamic design of centrifugal compressors and the feasibility study of SOFC-gas turbine system design.

Steady/unsteady Flow Analysis for Industrial Mixer (산업용 교반기 내부 정상/비정상 유동특성해석)

  • Chang, J.;Hur, N.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.460-465
    • /
    • 2001
  • In the present study, steady and unsteady flow characteristics inside an industrial mixer with flat turbine type impeller are studied. For the flow analysis, STAR-CD is used with an automatic mesh generator developed in the present study. flow results are compared to the an available experimental data to show validity or the present simulation.

  • PDF

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

  • Tamaki, Hideaki;Unno, Masaru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • The flow behind the variable area nozzle which corresponds to the flow at the leading edge of the impeller was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated. One is the smallest and the other is the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak and the effect of wake is dominant.