• Title/Summary/Keyword: Tunnel-Face

Search Result 425, Processing Time 0.022 seconds

A Study on Tunnel Entry Design Considering the Booming Noise Resulting from Micro-Pressure Wave (미기압파에 의한 터널 출구 소음 저감을 위한 고속철도 터널 형상 개선에 관한 연구)

  • 목재균;최강윤;유재석
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.959-966
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the results, the flow disturbances occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

A study on tunnel entry design considering the booming noise resulting from micro-pressure wave (미기압파에 의한 터널출구소음저감을 위한 고속철도 터널형상개선에 관한 연구)

  • 목재균;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.627-635
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the reslts, the flow disturbance occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

Quantitative evaluation of collapse hazard levels of tunnel faces by interlinked consideration of face mapping, design and construction data: focused on adaptive weights (막장관찰 및 설계/시공자료가 연계 고려된 터널막장 붕괴 위험도의 정량적 산정: 가변형 가중치 중심으로)

  • Shin, Hyu-Soung;Lee, Seung-Soo;Kim, Kwang-Yeom;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.505-522
    • /
    • 2013
  • Previously, a new concept of indexing methodology has been proposed for quantitative assessment of tunnel collapse hazard level at each tunnel face with respect to the given geological data, design condition and the corresponding construction activity (Shin et al, 2009a). In this paper, 'linear' model, in which weights of influence factors are invariable, and 'non-linear' model, in which weights of influence factors are variable, are taken into account with some examples. Then, the 'non-linear' model is validated by using 100 tunnel collapse cases. It appears that 'non-linear' model allows us to have adapted weight values of influence factors to characteristics of given tunnel site. In order to make a better understanding and help for an effective use of the system, a series of operating processes of the system are built up. Then, by following the processes, the system is applied to a real-life tunnel project in very weak and varying ground conditions. Through this approach, it would be quite apparent that the tunnel collapse hazard indices are determined by well interlinked consideration of face mapping data as well as design/construction data. The calculated indices seem to be in good agreement with available electric resistivity distribution and design/construction status. In addition, This approach could enhance effective usage of face mapping data and lead timely and well corresponding field reactions to situation of weak tunnel faces.

Design and Construction for Mountain-Tunnel Under the Soil Area (산악터널 토사구간의 설계와 시공)

  • Moon, Du-Hyung;Moon, Hoon-Ki;Kang, In-Seop;Lee, Jae-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.845-862
    • /
    • 2009
  • Recently, Tunnel in soil has been designed frequently because Mountain Tunnel has been increased rapidly due to straight of horizontal curve and residents' complaints, tunnel portal has been planned at closed to surface for minimization of environmental damage. To excavate tunnel in soil, where displacement and crushing occur in tunnel face and crown because of unstable ground condition, appropriate reinforcement method needed. On this paper, through design and construction of the soil tunnel, consider application of reinforcement method, economical efficiency and stability.

  • PDF

A Study of RMR in Tunnel with Risk Factor of Collapse (터널 붕괴 위험도에 따른 RMR 연구)

  • Jang, Hyong-Doo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.333-340
    • /
    • 2011
  • RMR is most strongly adopted rock classification method to scheme support system in domestic tunnel. However the RMR, which is based on geological survey during design stage of tunnel, can't present the real ground accurately. In this study, authors suggested Weighted-RMR (W-RMR) which is considered weighted value of risk factors of collapse due to prevent collapse and roof falls during tunneling. According to the application of W-RMR to Bye-Gye tunnel, we could change support type flexibly by the risk factors on a face of tunnel.

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.

Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment (선진시추장비와 시추공벽 영상화 장비를 이용한 TBM 전방 지반평가시스템 개발)

  • Kim, Ki-Seog;Kim, Jong-Hoon;Jeong, Lae-Chul;Lee, In-Mo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.393-401
    • /
    • 2015
  • In the construction of a TBM tunnel, it is very important to acquire accurate information of the excavated rock mass for an efficient and safe work. In this study, we developed the prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment to predict rock mass conditions of the tunnel face ahead. The prediction system consists of the probe drilling equipment, drilled hole imaging equipment and analysis software. The probe drilling equipment has been developed to be applicable to both non-coring and coring. Also the probe drilling equipment can obtain the drilling parameters such as feed pressure, torque pressure, rotation speed, drilling speed and so on. The drilling index is converted to the drilling index RMR through the correlation between a drilling index and core RMR. The developed system verification was carried out through a slope and tunnel field application. From the field application result, the non-coring is four times faster than a coring and the drilling index RMR and core RMR are similar in the distribution range. This system is expected to predict the rock mass conditions of the TBM tunnel face ahead very quickly and efficiently.

Derivation and verification of electrical resistivity theory for surrounding ground condition prediction of TBM (TBM 주변 지반상태예측을 위한 전기비저항 이론식 유도 및 검증)

  • Hong, Chang-Ho;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Since the depth of tunneling with tunnel boring machine (TBM) becomes deeper and deeper, the expense for site investigation for coring and geophysical survey increases to obtain the sufficient accuracy. The tunnel ahead prediction methods have been introduced to overcome this limitation in the stage of site investigation. Probe drilling can obtain the core and borehole images from a borehole. However, the space in TBM for the probe drilling equipment is restricted and the core from probe drilling cannot reflect the whole tunnel face. Seismic methods such as tunnel seismic prediction (TSP) can forecast over 100 m ahead from the tunnel face though the signal is usually generated using the explosive which can affect the stability of segments and backfill grout. Electromagnetic methods such as tunnel electrical resistivity prospecting system (TEPS) offer the exact prediction for a conductive zone such as water-bearing zone. However, the number of electrodes installed for exploration is limited in small diameter TBM and finally the reduction of prediction ranges. In this study, the theoretical equations for the electrical resistivity survey whose electrodes are installed in the face and side of TBM to minimize the installed electrodes on face. The experimental tests were conducted to verify the derived equations.

Numerical Analysis on the Effect of Heterogeneous Nature of Rock Masses on Tunnel Behavior (터널 거동에 대한 암반 연약대의 영향 평가를 위한 수치해석적 연구)

  • Baek, Seung-Han;Kim, Chang-Yong;Kim, Kwang-Yeom;Hong, Sung-Wan;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.115-128
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of a tunnel. A tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to a safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysed by 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of the tunnel face can be possible.

  • PDF

Smart monitoring analysis system for tunnels in heterogeneous rock mass

  • Kim, Chang-Yong;Hong, Sung-Wan;Bae, Gyu-Jin;Kim, Kwang-Yeom;Schubert, Wulf
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.255-261
    • /
    • 2003
  • Tunnelling in poor and heterogeneous ground is a difficult task. Even with a good geological investigation, uncertainties with respect to the local rock mass structure will remain. Especially for such conditions, a reliable short-term prediction of the conditions ahead and outside the tunnel profile are of paramount importance for the choice of appropriate excavation and support methods. The information contained in the absolute displacement monitoring data allows a comprehensive evaluation of the displacements and the determination of the behaviour and influence of an anisotropic rock mass. Case histories and with numerical simulations show, that changes in the displacement vector orientation can indicate changing rock mass conditions ahead of the tunnel face (Schubert & Budil 1995, Steindorfer & Schubert 1997). Further research has been conducted to quantify the influence of weak zones on stresses and displacements (Grossauer 2001). Sellner (2000) developed software, which allows predicting displacements (GeoFit$\circledR$). The function parameters describe the time and advance dependent deformation of a tunnel. Routinely applying this method at each measuring section allows determining trends of those parameters. It shows, that the trends of parameter sets indicate changes in the stiffness of the rock mass outside the tunnel in a similar way, as the displacement vector orientation does. Three-dimensional Finite Element simulations of different weakness zone properties, thicknesses, and orientations relative to the tunnel axis were carried out and the function parameters evaluated from the results. The results are compared to monitoring results from alpine tunnels in heterogeneous rock. The good qualitative correlation between trends observed on site and numerical results gives hope that by a routine determination of the function parameters during excavation the prediction of rock mass conditions ahead of the tunnel face can be improved. Implementing the rules developed from experience and simulations into the monitoring data evaluation program allows to automatically issuing information on the expected rock mass quality ahead of the tunnel.

  • PDF