• Title/Summary/Keyword: Tunnel numerical analysis

Search Result 1,159, Processing Time 0.026 seconds

Numerical Predictions of Fire Characteristics of Passenger Train Fire in an Underground Subway Tunnel, Depending on Change of Location of Ventilation Facility (지하철 터널내의 객차 화재발생시 환기실 위치변화에 따른 화재특성의 수치적 연구)

  • Son, Bong-Sei;Chang, Hee-Chul
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • The study is to perform numerical analysis of train fire characteristics in an underground subway tunnel, depending the different locations of ventilation facility. To study the characteristics of train fire, two kinds of worst-case scenarios are selected, based on escape distance, escape time, and fire zone, and trends and thermal environments of tunnel are analyzed by changing the locations of ventilation facility for times. Fire characteristics is calculated by using FLUENT v.6.3.26, and turbulent flow is calculated by using the standard k-${\varepsilon}$ model. The numerical results show distribution of carbon monoxide concentration, temperature, and velocity. The results of this study will contribute to building the most suitable ventilation systems when designing subway stations and tunnels.

Safety assessment of an underground tunnel subjected to missile impact using numerical simulations

  • Thai, Duc-Kien;Nguyen, Duy-Liem;Pham, Thanh-Tung;Pham, Thai-Hoan
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This work presents a safety assessment of an underground tunnel subjected to a ballistic missile attack employing the numerical approach. For the impact simulation, a box shaped reinforced concrete (RC) structure with a cross section dimension of 8.0×10.0 m under a soil layer that was attacked by a SCUD missile was modeled using finite element (FE) software LS-DYNA. SCUD missile is one of a series of tactical ballistic missiles developed by Soviet Union during the Cold War, which is adopted for a short-range ballistic missile. The developed FE simulation for the penetration depth of the missile impacting into the soil structure was verified from the well-known formula of the penetration prediction. The soil-structure interaction, the soil type, and the impact missile velocity effects on the penetration depth of the missile into the different soil types were investigated. The safety assessment of the underground tunnel was performed with regard to the different depths of the underground tunnel. For each missile velocity and soil type, a specific depth called the unsafe depth was obtained from the analysis results. The structure beneath the soil beyond this depth remains safe. The unsafe depth was found to be increased with the increasing missile velocity.

Stability Analysis of Tunnels Excavated in Squeezing Rock Masses (압출 암반내 굴착된 터널의 안정성해석)

  • 정소걸
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Refering to the articles "Squeezing rocks in tunnels(Barla, 1995)" and "Tunnelling under squeezing rock conditions(Barla 2002)" this article deals with technologies for design, stability analysis and construction of the tunnel being driven in the squeezing rock mass. The definition of this type of behavior was proposed by ISRM(1994). The identification and quantification of squeezing is given according to both the empirical and semi-empirical methods available to anticipate the potential of squeezing problems in tunnelling. Based on the experiences and lessons learned in recent years, the state of the art in modem construction methods was reported, when dealing with squeezing rock masses by either conventional or mechanical excavation methods. The closed-form solutions available for the analysis of the rock mass response during tunnel excavation are described in terms of the ground characteristic line and with reference to some elasto-plastic models for the given rock mass. Finally numerical methods were used for the simulation of different models and for design analysis of complex excavation and support systems, including three-dimensional conditions in order to quantify the influence of the advancing tunnel face to the deformation behavior of the tunnel.

A study of settlement safety for existing ground with twin tunnel progressing (쌍굴굴착으로 인한 인근지반의 침하 안전에 관한 연구)

  • 정대석
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.55-61
    • /
    • 1992
  • An engineer designing a tunnel in an urban area should be to predict the magnitude and distribution of ground movements which are important to Investigate the potential damage to the existing structures around tunnel. The present study examines available theories and emprical equations, and tries to investigate quantativily ground movements around tunnel with tunnel progressing. Approcaches to the problem of ground movements associated with twin tunnel was and elasto - plastic finite element method. Typical section in Seoul Subway were selected in numerical study. The analysis and study was done with respect. to surface, subsurface and crown settlements with varying ground conditions, tunnel geommetry and construction conditions.

  • PDF

A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model (존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구)

  • Kim, Hyun-Jeong;Roh, Jae-Seong;Kim, Dong-Hyeon;Jang, Yong-Jun;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

A Tunnel Mock-up Test and Numerical Analysis on Steel Fiber Reinforced Shotcrete (강섬유 보강 숏크리트의 터널모형실험 및 수치해석적 검증)

  • You, Kwang-Ho;Jung, Ji-Sung;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.107-117
    • /
    • 2008
  • In this study, the failure and deformation characteristics of steel fiber reinforced shotcrete (SFRS) which is a primary tunnel support was investigated to find out ground-support mutual behavior. To this end, a mock-up of a tunnel was made and experimented with the conditions of lateral earth pressure coefficient 0.5 and 1.0. During the tests, 11 hydraulic cylinders were used for loading. for better simulation of the lateral earth pressure effect, these cylinders were controlled separately by two groups; crown and side wall. Meanwhile, the deformation of shotcrete was measured by 11 LVDTs. Backfill material was also used fur better load transfer from hydraulic cylinders to shotcrete. For the validation of the mock-up test results, 3D numerical analysis is carried out. To do numerical analysis under the same condition as a mock-up test, the load history curve which was obtained during the test was tried to be simulated using an individual FISH routine in the numerical analysis.

Analysis of Interaction Between Recirculating Flow Near The Jet Fan and The Backlayer of Smoke in a Road Tunnel (도로터널에서 제트팬 근처의 재순환유동과 연기 역류현상의 상호작용 분석)

  • Kim, Chang-Kyun;Ryu, Jin-Woong;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.191-201
    • /
    • 2005
  • A numerical analysis was done for a tunnel fire in a 1000m road tunnel. A cartesian coordinate was adopted to make a computational grid sytem which has 448,000 computational cells. A transient flow phenomena in the tunnel was simulated by the commercial code of PHEONICS from the ignition of fire to 600 seconds by the interval of 100 seconds. Total computational time of about 44 hours was required to get a convered solution in each time step. The purpose of this research is to analyze of the backlayering pheonomena and recirculation flow in a tunnel. The compuational results say that the backlayering does not happens near the fire of vehicle in this case because the vehicle fire is located at the outside of recirculation zone of flow ocuured near the jet fan. In this research, onset of backlayering pheonomena could be escaped if jet fan is set 95m in front of the the fire of vehicle.

  • PDF

Assessment of pull-out behavior of tunnel-type anchorages under various joint conditions

  • Junyoung Ko;Hyunsung Lim;Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • This study analyzes the pull-out behavior of tunnel-type anchorage under various joint conditions, including joint direction, spacing, and position, using a finite element analysis. The validity of the numerical model was evaluated by comparing the results with a small-scaled model test, and the results of the numerical analysis and the small-scaled model test agree very well. The parametric study evaluated the quantitative effects of each influencing factor, such as joint direction, spacing, and position, on the behavior of tunnel-type anchorage using pull-out resistance-displacement curves. The study found that joint direction had a significant effect on the behavior of tunnel-type anchorage, and the pull-out resistance decreased as the displacement level increased from 0.002L to 0.006L (L: anchorage length). It was confirmed that the reduction in pull-out resistance increased as the number of joints in contact with the anchorage body increased and the spacing between the joints decreased. The pull-out behavior of tunnel-type anchorage was thus shown to be significantly influenced by the position and spacing of the rock joints. In addition, it is found that the number of joints through which the anchorage passes, the wider the area where the plastic point occurs, which leads to a decrease in the resistance of the anchorage.

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.100-108
    • /
    • 2014
  • A numerical analysis method for predicting aerodynamic noise at inter-coach space of high-speed trains, validated by wind-tunnel experiments for limited speed range, is proposed. The wind-tunnel testing measurements of the train aerodynamic sound pressure level for the new generation Korean high-speed train have suggested that the inter-coach space aerodynamic noise varies approximately to the 7.7th power of the train speed. The observed high sensitivity serves as a motivation for the present investigation on elucidating the characteristics of noise emission at inter-coach space. As train speed increases, the effect of turbulent flows and vortex shedding is amplified, with concomitant increase in the aerodynamic noise. The turbulent flow field analysis demonstrates that vortex formation indeed causes generation of aerodynamic sound. For validation, numerical simulation and wind tunnel measurements are performed under identical conditions. The results show close correlation between the numerically derived and measured values, and with some adjustment, the results are found to be in good agreement. Thus validated, the numerical analysis procedure is applied to predict the aerodynamic noise level at inter-coach space. As the train gains speed, numerical simulation predicts increase in the overall aerodynamic sound emission level accompanied by an upward shift in the main frequency components of the sound. A contour mapping of the aerodynamic sound for the region enclosing the inter-coach space is presented.