• Title/Summary/Keyword: Tunnel image

Search Result 243, Processing Time 0.022 seconds

Development of Tomographic SASW Method to Evaluate Two-Dimensional Variability of Shear Stiffness (지반 및 구조물의 이차원적 전단강성 평가를 위한 토모그래픽 SASW 기법의 개발)

  • 조성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • The SASW (Spectral-Analysis-of-Surface-Waves) method, which evaluates the stiffness structure of the subsurface and structures nonintrusively and nondestructively, has been successfully used in the civil engineering applications. However, the SASW method assumes that the subsurface or structures consist of horizontal multi-layers, so that the method has some difficulty in continuously evaluating the integrity of a tunnel lining and a pavement system. This difficulty prevents the SASW method from being used to generate a tomographic image of stiffness for the subsurface or structures. Recently, the GPR technique which has the advantage of continuously evaluating integrity of the subsurface and structures has been popular. This advantage of GPR technique initiated the efforts to make the SASW method, which is superior to GPR and other nondestructive testing methods due to its capability of evaluating stiffness and modulus, be able to do continuous evaluation of stiffness structure, and the efforts finally lead to the development of \ulcornerTomographic SASW Technique.\ulcorner Tomographic SASW technique is a variation of the SASW method, and can generate a tomographic image of stiffness structure along the measurement line. The tomographic SASW technique was applied to the investigation of lateral variability of a sand box placed by the raining method for the purpose of verifying its effectiveness. Tomographic SASW measurements on the sand box revealed that the investigated sand box has different shear stiffness along the measurement line, which gave a clue of how to make a better raining device.

  • PDF

A case study of ground subsidence analysis using the InSAR technique (InSAR 기술을 이용한 지반침하분석 사례연구)

  • Moon, Joon-Shik;Oh, Hyoung-seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • InSAR (Interferometry SAR) technique is a technique that uses complex data to obtain phase difference information from two or more SAR image data, and enables high-resolution image extraction, surface change detection, elevation measurement, and glacial change observation. In many countries, research on the InSAR technique is being conducted in various fields of study such as volcanic activity detection, glacier observation in Antarctica, and ground subsidence analysis. In this study, a case of large ground settlement due to groundwater level drawdown during tunnelling was introduced, and ground settlement analyses using InSAR technique and numerical analysis method were compared. The maximum settlement and influence radius estimated by the InSAR technique and numerical method were found to be quite similar, which confirms the reliability of the InSAR technique. Through this case study, it was found that the InSAR technique reliable to use for estimating ground settlement and can be used as a key technology to identify the long-term ground settlement history in the absence of measurement data.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

Study of the Static Shear Behaviors of Artificial Jointed Rock Specimens Utilizing a Compact CNS Shear Box (Compact CNS shear box를 활용한 모의 절리암석시료의 정적 전단 거동에 관한 연구)

  • Hanlim Kim;Gyeongjo Min;Gyeonggyu Kim;Youngjun Kim;Kyungjae Yun;Jusuk Yang;Sangho Bae;Sangho Cho
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.574-593
    • /
    • 2023
  • In this study, the effectiveness and applicability of a newly designed Compact CNS shear box for conducting direct shear tests on jointed rock specimens were investigated. CNS joint shear tests were conducted on jointed rocks with Artificially generated roughness while varying the fracture surface roughness coefficient and initial normal stress conditions. In addition, displacement data were validated by Digital image correlation analysis, fracture patterns were observed, and comparative analysis was conducted with previously studied shear behavior prediction models. Furthermore, the accuracy of the displacement data was confirmed through DIC analysis, the fracture patterns were observed, and the shear properties obtained from the tests were compared with existing models that predict shear behavior. The findings exhibited a strong correlation with specific established empirical models for predicting shear behavior. Furthermore, the potential linkage between the characteristics of shear behavior and fracture patterns was deliberated. In conclusion, the CNS shear box was shown to be applicable and effective in providing data on the shear characteristics of the joint.

A Study on Acoustic Emission and Micro Deformation Characteristics During Biaxial Compression Experiments of Underground Opening Damage (이축압축실험을 통한 지하공동 손상시 음향방출 및 미소변형 특성 연구)

  • Min-Jun Kim;Junhyung Choi;Taeyoo Na;Chan Park;Byung-Gon Chae;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.169-184
    • /
    • 2024
  • This study investigates acoustic emission (AE) and micro-deformation characteristics of circular openings through biaxial compression experiments. The experimental results showed a significant increase in the frequency, count, energy, and amplitude of AE signals immediately before damage occurred in the circular opening. The differences in frequency and count between before and after damage initiation were significantly pronounced, indicating suitable factors for identifying damage occurrence in circular openings. The results for digital image correlation (DIC) technique revealed that micro-deformation was concentrated around the openings, as evidenced by the spatial distribution of strain. In addition, spalling was observed at the end of the experiments. The AE and micro-deformation characteristics presented in this study are expected to serve as fundamental data for evaluating the stability of underground openings and boreholes for deep subsurface projects.

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.

Multi-purpose Geophysical Measurements System Using PXI (PXI를 이용한 다목적 물리탐사 측정 시스템)

  • Choi Seong-Jun;Kim Jung-Ho;Sung Nak-Hun;Jeong Ji-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In geophysical field surveys, commercial equipments often fail to resolve the subsurface target or even sometimes fail to be applied because they do not fit to the various field situations or the physical properties of the medium or target. We developed a geophysical measurement system, which can be easily adapted for the various field situations and targets. The system based on PXI with A/D converter and some stand alone equipment such as Network Analyzer was applied to borehole radar survey, borehole sonic measurement and electromagnetic noise measurement. The system for borehole radar survey consists of PXI, Network Analyzer, dipole antennas, GPIB interface is used for PXI to control Network Analyzer. The system for borehole sonic measurement consists of PXI, 24 Bit A/D converter, high voltage pulse generator, transmitting and receiving piezoelectric sensors. The electromagnetic noise measurement system consists of PXI, 24 Bit A/D converter, 2 horizontal component electric field sensors and 2 horizontal and 1 vertical component magnetic filed sensors. The borehole radar system has been successfully applied to detect the width of the artificial tunnel through which the borehole pass and to image buried steel pipe, while the commercial borehole radar equipment failed. The borehole sonic system was tested to detect the width of artificial tunnel and showed a reasonable result. The characteristic of electromagnetic noise was grasped at an urban area with the data from the electromagnetic noise measurement system. The system is also applied to characterize the signal distortion by induction between the electric cables in resistivity survey. The system can be applied various geophysical problems with a simple modification of the system and sensors.

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area (폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 2011
  • We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.