• Title/Summary/Keyword: Tunnel earth pressure

Search Result 139, Processing Time 0.029 seconds

Development of shield-TBM scale model system for excavation of curved section (급곡구간 굴착을 위한 쉴드-TBM 축소모형 장비 시스템 개발)

  • Kong, Min-Teak;Kim, Yeon-Deok;Lee, Kyung-Heon;Hwang, Beoung-Hyeon;An, Jun-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.849-860
    • /
    • 2019
  • This paper is a study on the development of equipment system to obtain data on stability in excavation of sharp curve section of Shield TBM. Shield TBM equipment is being used a lot recently for tunnel excavation. Excavation may result in inevitable detours by buildings above the ground or existing underground structures. Preconstruction simulation is required to verify the stability of the construction in case of this. Therefore, it is necessary to establish an automated control system through the development of this equipment system and conduct simulation through simulation of excavation model in the sharp curve section. A system shall be developed to control the left and right angles and thrust of the equipment, and to view data on the earth pressure and propulsion pressure of the equipment in real time during excavation. With this system, the necessary data can be collected for field testing through excavation method and excavation simulation by angle. It is expected that it will be very useful in assessing the actual Shield TBM by conducting a scale-down model experiment.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite (한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태)

  • Cho, Wan Hyoung;Baik, Min Hoon;Park, Tae-Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.117-128
    • /
    • 2017
  • Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Preliminary study on a spoke-type EPB shield TBM by discrete element method (개별요소법을 활용한 스포크 타입 토압식 쉴드TBM의 예비 해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1029-1044
    • /
    • 2017
  • The Discrete Element Method (DEM) is one of the useful numerical methods to analyze the behavior of the ground formation by computing the motion and interaction using particles. The DEM has not been applied in civil engineering but also a wide range of industrial fields, such as chemical engineering, pharmacy, material science, food engineering, etc. In this study, to review a performance of the spoke-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine), the commercial software based on the DEM technology was used. An analysis of the TBM during excavation was conducted according to two pre-defined excavation conditions with the different rotation speed of a cutterhead. During the analysis, the resistant torque at the face of the cutterhead, the compressive force at the cutterhead and shield surface, the muck discharge at the screw auger were measured and compared. Upon the two kinds of excavation conditions, the applicability of the DEM analysis was reviewed as a modelling method for the TBM.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

A Case Study of Delay Analysis for E.P.B Shield TBM Method in Construction Site (E.P.B(Earth Pressure Balance) Shield TBM 공사의 공기지연 사례연구)

  • Kwak, Jun-Hwan;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.737-743
    • /
    • 2009
  • Shield TBM, since it was employed for Suyoungman Bay riverbed tunnel of Busan Subway in 2000,has been increasingly adopted in Korea, and in line with growing popularity, the study on Shield TBM has been expanded. However the studies mostly focus on ground condition in a bid to estimate the advancement rate and develop the model for calculating the excavation efficiency, whereas the efforts to analyze the cause of delay and to develop the improvement measures have been neglected. Thus the studies were mostly intended to analyze the schedule slippage focusing on ground conditions, while the study on schedule behind due to equipment itself and related facilities have yet to be attempted in earnest. This study hence was aimed at evaluating the troubles and schedule slippage caused by mechanical elements such as shield TBM equipment and tools and ground conditions, making use of FMEA approach so as to analyze the risk of schedule delay by such elements, thereby proposing the preventive measures to deal with high-risk factors. So, this study suggest the solution to highly ranked trouble factor for the purpose of enhance the efficiency on Shield TBM.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.