• Title/Summary/Keyword: Tunnel Stability Estimation

Search Result 70, Processing Time 0.023 seconds

Comparison and validation on shotcrete modelling method for the quantitative stability estimation of a tunnel (터널의 정량적 안정성 평가를 위한 숏크리트 모델링 방법 비교 검증에 관한 연구)

  • You, Kwang-Ho;Lee, Min-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2007
  • A method was suggested by You et al. (2000) to calculate safety factor of a tunnel based on numerical analysis with the shear strength reduction technique. In the method, the shotcrete is assumed to fail when its stress exceeds the allowable stress. The proposed method had been steadily developed by You et al. (2005) and Han et al. (2006). In this study, the previous routine was corrected so that tunnel construction sequences could be considered in calculating the safety factor of a tunnel. In addition, a proper way to model shotcrete is to be suggested by comparing with the previous studies.

  • PDF

Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis

  • Kim, Dohyun;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-335
    • /
    • 2021
  • This paper aims to estimate the range of the excavation damaged zone (EDZ) formation caused by the tunnel boring machine (TBM) advancement through dynamic three-dimensional large deformation finite element analysis. Large deformation analysis based on Coupled Eulerian-Lagrangian (CEL) analysis is used to accurately simulate the behavior during TBM excavation. The analysis model is verified based on numerous test results reported in the literature. The range of the formed EDZ will be suggested as a boundary under various conditions - different tunnel diameter, tunnel depth, and rock type. Moreover, evaluation of the integrity of the tunnel structure during excavation has been carried out. Based on the numerical results, the apparent boundary of the EDZ is shown to within the range of 0.7D (D: tunnel diameter) around the excavation surface. Through series of numerical computation, it is clear that for the rock of with higher rock mass rating (RMR) grade (close to 1st grade), the EDZ around the tunnel tends to increase. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional to the magnitude of the EDZ. However, the relationship between the formation of the EDZ and the stability of the tunnel was not found to be consistent. In case where the TBM excavation is carried out in hard rock or rock under high confinement (excavation under greater depth), large range of the EDZ may be formed, but less strain occurs along the excavation surface during excavation and is found to be more stable.

Safety analysis for the tunnel adjacent to the pier (교각에 근접한 터널의 안정성 평가)

  • Lee, Sun-Bok;Yoon, Ji-Son
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.313-324
    • /
    • 2004
  • The finite element method and statistics of the convergence measurement are useful method of the stability analysis of the tunnel adjacent to the pier. It is the purpose of the this case study to certificate of validity of the application of those methods. The safety of the pilot tunnel method and LW pre-grouting has been evaluated from the FEM analysis. The three-dimensional finite element method is carried out for the decision of the level of stress redistribution at the two-dimensional numerical analysis. An analysis of the convergence is carried out by the estimation of preceding convergence at tunnel excavation. F-examination is applied for this estimation. As results of that analysis, The F-value is from 10.81 to 158.74 and the coefficient of determination is from 0.82 to 0.99. An analysis of convergence is carried out by using regression analysis. Consequently, it is shown that the convergence can be modeled as following function C(t) = a[1-exp(-bt)].

  • PDF

A Study on the Estimation of the Behaviors by Compression Method of Rock Pillar between Close Parallel Tunnels (근접 병설터널에서 필라 압축방법에 따른 필라부 강도특성 변화에 관한 연구)

  • Kim, Jae-Kyoung;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.87-94
    • /
    • 2013
  • In recent years, tunnel construction is being increased in order to resolve traffic congestion around urban area, however there are a lot of difficulties due to restrictions such as interference with existing alignment, adjacent structures and cost increase of land acquisition as well as public complaints for negative environmental impacts near the expected tunnel construction site. Therefore, applications of close parallel tunnel have been increasing greatly. But close parallel tunnels cannot guarantee the stability compared with normal parallel tunnel which has enough distance between tunnels. So various methods to strengthen the pillar have been introduced recently, however there is few methods which consider the pillar behaviour in the state of compression. In this paper, the reinforcement methods which reflect the behavior of pillar were reviewed with comparision and analysis by numerical method.

Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography

  • Suzuki Koichi;Nakata Eiji;Minami Masayuki;Hibino Etsuhisa;Tani Tomonori;Sakakibara Jyunichi;Yamada Naouki
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • The objective of this study is to estimate the distribution of a zone disturbed by excavation (EDZ) around tunnels that have been excavated at about 500 m depth in pre-Tertiary hard sedimentary rock. One of the most important tasks is to evaluate changes in the dynamic stability and permeability of the rock around the tunnels, by investigating the properties of the rock after the excavation. We performed resistivity and acoustic tomography using two boreholes, 5 m in length, drilled horizontally from the wall of a tunnel in pre-Tertiary hard conglomerate. By these methods, we detected a low-resistivity and low-velocity zone 1 m in thickness around the wall of the tunnel. The resulting profiles were verified by permeability and evaporation tests performed at the same boreholes. This anomalous zone matched a high-permeability zone caused by open fractures. Next, we performed resistivity monitoring along annular survey lines in a tunnel excavated in pre-Tertiary hard shale by a tunnel-boring machine (TBM). We detected anomalous zones in 2D resistivity profiles surrounding the tunnel. A low-resistivity zone 1 m in thickness was detected around the tunnel when one year had passed after the excavation. However, two years later, the resistivity around the tunnel had increased in a portion, about 30 cm in thickness, of this zone. To investigate this change, we studied the relationship between groundwater flow from the surroundings and evaporation from the wall around the tunnel. These features were verified by the relationship between the resistivity and porosity of rocks obtained by laboratory tests on core samples. Furthermore, the profiles matched well with highly permeable zones detected by permeability and evaporation tests at a horizontal borehole drilled near the survey line. We conclude that the anomalous zones in these profiles indicate the EDZ around the tunnel.

Optimized Design of Mine Span Considering the Characteristics of Rockmass in Soft Ground (연약암반에서 암반의 특성을 고려한 광산갱도의 최적 설계)

  • Jang, Myoung Hwan;Ha, Taewook;Jeong, Hee Sun
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.125-141
    • /
    • 2018
  • For a long-term mine development plan, the determination and design of mine tunnel size are very important because it is the basis of plans for equipment, transportation and operation. The ${\bigcirc}{\bigcirc}$ mine has had a difficulty in changing the mining plan due to the design of the tunnels with an emphasis on productivity improvement, and much effort was needed to maintain the mine tunnel. In this study, we designed the mine tunnel with optimized tunnel span considering the mechanical properties of rockmass and established the support plan. To do this, the estimation of the mechanical parameters(Swelling pressure, deformation coefficient and earth coefficient), field investigations and various analyses were carried out. As a result, it was necessary to consider the downsizing of the tunnel section in order to maintain the tunnel stability and dimension by using the roof bolt and analyzed that various functional constructions of the support material and method would be required to maintain the current tunnel size.

Stability Estimation of the Closely-spaced Twin Tunnels Located in Fault Zones (단층대에 위치한 근접병설터널의 안정성평가)

  • Hwang, Jae-Seok;Kim, Ju-Hwan;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.170-185
    • /
    • 2018
  • The effect of fault on the stability of the closely-spaced twin tunnels located in fault zones was investigated by numerical analyses and scaled model tests on condition of varying widths, inclinations and material properties of fault. When obtaining the strength/stress ratios of pillar between twin tunnels, three different stresses were used which were measured at the middle point of pillar, calculated to whole average along the pillar section and measured at the left/right edges of pillar. Among them, the method by use of the left/right edges turned out to be the most conservative stability estimation regardless of the presence of fault and reflected the excavating procedures of tunnel in real time. It was also found that the strength/stress ratios of pillar were decreased as the widths and inclinations of fault were increased and as the material properties of fault were decreased on condition using the stresses measured at the left/right edges of pillar. As a result of scaled model tests, it was found that the model with fault showed less crack initiating pressure than the model without fault. As the width of fault was larger, tunnel stability was decreased. The fault had also a great influence on the failure behavior of tunnels, such as the model without fault showed failure cracks generated horizontally at the left/right edges of pillar and at the sidewalls of twin tunnels, whereas the model with fault showed failure cracks directionally generated at the center of pillar located in the fault zone.

A Study on the Estimation of the Structural Stability of a Container Crane according to the Change of the Boom Shape using Wind Tunnel Test (풍동실험을 이용한 붐 형상 변화에 따른 컨테이너 크레인 구조 안정성 평가에 관한 연구)

  • Lee Seong-Wook;Han Geun-Jo;Han Dong-Seop;Kim Tae-Ryung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.311-316
    • /
    • 2006
  • This study was carried out to analyze the effect of wind load on the structural stability of a container crane according to the change of the boom shape using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with $11.25m^2$ cross-section area. Each directional drag and overturning moment coefficients were investigated and uplift forces at each supporting point due to the wind load were analyzed.

  • PDF

Estimation of the Blasting Distance Satisfying Allowable Peak Particle Velocity - Analytical & Numerical Analysis Approach (허용진동속도를 만족하는 발파이격거리 산정 - 이론식 & 수치 해석적 접근)

  • Jeon, Sang-Soo;Jang, Yang-Won;Jung, Du-Hwoe
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.39-46
    • /
    • 2007
  • The blasting load induced by the explosion of the powder generation the vibration of the ground and affects on nearby ground and underground structures. The structures are possibly damaged and it may create the social problems such as noneconomic construction due to the delay of the construction period especially in urban areas. Therefore, the stability of the nearby structures need to be evaluated. In this study, the stability of the tunnel is estimated and examined by the analytical solution and by using $FLAC^{2D}$ which is one of the programs based on the finite difference analysis.

Study on the Estimation of Safety Zone and the Movement of Ground at the Inter-Crossing Tunnel (교차터널에서의 지반거동 및 안전영역평가에 관한 연구)

  • Kim, Woo-Sung;Yoo, Dong-Uk;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.491-502
    • /
    • 2008
  • A certain range of the original ground around the tunnel should be preserved to ensure structural safety of the tunnel when other structures are made around the tunnel, and thus this range is defined as safety zone of the tunnel. The main points to ensure the stability of an existing tunnel when constructing a new tunnel in an inter-crossing area are distance between two tunnels, size of the new tunnel, excavation method for the new tunnel, ground condition around the tunnel, and lining type of the existing tunnel etc. When the new tunnel is excavated above the existing tunnel, the existing tunnel is likely to suffer deformation at a crown zone, damage of arching effect, and live load of the new tunnel etc. On the other hand, when the new tunnel is excavated below the existing tunnel, the existing tunnel is likely to be damaged due to settlement. This study has been made on the behavior of the existing tunnel by means of model test and numerical analysis when the new tunnel is excavated below the existing tunnel. Safety zone of the tunnel was estimated by the results of strength/stress ratio obtained from numerical analysis, and the movement of ground was estimated by the model test. The results of earth pressure, ground displacements, and convergence of the tunnel obtained from model test were compared with those of numerical analysis, and show a similar trend.