• 제목/요약/키워드: Tunnel Model Experiment

검색결과 216건 처리시간 0.031초

터널화재에서 환기속도와 backlayer의 길이변화 (The Change of Backlayer Length with the Ventilation Air Velocity in the Tunnel Fire)

  • 김성준;이민규
    • 한국화재소방학회논문지
    • /
    • 제17권3호
    • /
    • pp.50-54
    • /
    • 2003
  • 본 연구는 도로 터널 화재 발생 시 연소가스의 backlayer현상을 수치실험하고 그 결과를 분석하였다. 상업용 열 유체해석코드인 PHOENICS를 사용하여 정상상태의 열 유동현상을 수치해석하였으며 환기용 공기속도를 독립변수로 하고 종속변수는 backlayer의 길이로 하였다. 수치해석에 사용한 난류모델은 $textsc{k}-\varepsilon$ 모델을 사용하였고 Hybrid 차분법을 사용하고 질량 잔류값을 수렴조건으로 사용하였다. 수치실험 결과 backlayer의 길이가 환기 속도에 반비례하여 감소하고 backlayer가 발생하지 않는 임계 환기속도가 있음을 확인 할 수 있었다. 또한 연소가스의 수직방향 성층화로 터널하부에 승객이 대피할 수 있는 공간이 존재함을 확인 할 수 있었다.

방파제에 의한 풍속할증이 풍력터빈에 미치는 영향 (Effect of Wind Speed up by Seawall on a Wind Turbine)

  • 하영철;이봉희;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.1-8
    • /
    • 2013
  • In order to identify positive or negative effect of seawall on wind turbine, a wind tunnel experiment has been conducted with a 1/100 scaled-down model of Goonsan wind farm which is located in West coast along seawall. Wind speedup due to the slope of seawall contributed to about 3% increment of area-averaged wind speed on rotor-plane of a wind turbine which is anticipated to augment wind power generation. From the turbulence measurement and flow visualization, it was confirmed that there would be no negative effect due to flow separation because its influence is confined below wind turbine blades' sweeping height.

풍동실험을 통한 국화군락의 공기유동 저항 분석 (Analysis for Aerodynamic Resistance of Chrysanthemum Canopy through Wind Tunnel Test)

  • 유인호;윤남규;조명환;이인복
    • 생물환경조절학회지
    • /
    • 제17권2호
    • /
    • pp.83-89
    • /
    • 2008
  • 작물은 복잡한 형상 때문에 CFD모델에서 다공성 매체로 설계된다. 작물이 고려된 CFD 모델 해석을 위해서는 작물군락의 공기저항값을 입력하여야 하며, 이 값은 작물에 따라 달라진다. 본 연구에서는 풍동실험을 통해 국화군락의 공기저항 값을 구하였다. 풍상측에서는 풍속과 재식밀도가 증가할수록 정압이 증가하였다. 풍하측에서는 풍속이 증가할수록 정압이 낮아졌으나 재식밀도의 영향은 크게 받지 않는 것으로 나타났다. 풍속과 재식밀도가 증가할수록 풍상측과 풍하측의 압력차가 커지는 것으로 나타났다. 국화군락의 공기저항값인 항력계수 $C_d$값은 0.22였으며, Fluent 프로그램의 공기저항 계수로 이용한다. CFX 프로그램에서 필요로 하는 다공성 매체의 특성값 $K_Q$는 재식간격 $9{\times}9cm$일 때 2.22, $11{\times}11cm$일 때 1.81, $13{\times}13cm$일 때 1.07이었으며, 이 값을 CFX 프로그램의 quadratic resistance coefficient로 입력한다.

충격파 풍동에서의 자유 낙하 장치를 활용한 힘 측정 (Free-fall Force Measurement in a Shock Tunnel)

  • 박진우;장원근;박기수
    • 한국항공우주학회지
    • /
    • 제44권6호
    • /
    • pp.463-467
    • /
    • 2016
  • 본 연구에서는 충격파 풍동을 이용하여 초음속 환경에서 사람 모델이 받는 압력과 가속도를 측정하였다. 전자석과 철가루가 내포되어 있는 3차원 사람 모델을 이용하여 모델 지지대로 인한 유동 흐름의 방해가 없는 자유 낙하 기법을 사용하였다. 마하 4 유동조건에 서 자유 낙하 실험을 수행하였으며, 실험을 통해 획득한 유동 가시화 이미지로 시간에 따른 사람 모델의 위치 변화를 파악하고 이를 통해 모델에 가해진 힘을 측정하였다.

건국대학교 충격파 풍동의 성능 해석에 관한 수치적 연구 (A Numerical Study on the Performance Analysis of Shock Tunnel)

  • 탁정수;변영환;이재우;이장연;허철준;최병철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.39-44
    • /
    • 2000
  • Two-dimensional Navier-Stokes codes are used to simulate the shock tunnel in Konkuk university. In order to design experiments in impulse facilities properly and to interpret data from such facilities, it is necessary to understand how the flow approaches steady state. This is done by determining the transient flow field and flow establishment time around a given model. This will be accomplished by developing appropriate CFD codes which solve the Navier-Stokes equations, and simulating the starting process and resulting unsteady viscous flow phenomena. The starting process in a shock tunnel consists of multiple shock interactions and contact discontinuities, which are difficult to solve with the classical shock capturing schemes. A recently developed high resolution scheme is adapted for resolving the unsteady phenomena of those multiple shock interactions and contact surfaces during the starting process. The bifurcation phenomenon due to the interactions of the reflected shock from the end of the shock tube with the boundary layer generated by the incident shock becomes of particular interest. By comparing with the experiment results, the accuracy of the numerical analysis is validated and it is demonstrated that the properties which can hardly be obtained through the experiment can be estimated.

  • PDF

Numerical Model for Stack Gas Diffusion in Terrain Containing Buildings - Application of Numerical Model to a Cubical Building and a Ridge Terrain -

  • Sada, Koichi;Michioka, Takenobu;Ichikawa, Yoichi
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권1호
    • /
    • pp.1-13
    • /
    • 2008
  • A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.

축소모형을 이용한 방음터널의 자연채광 성능평가에 관한 연구 (A Study on the Evaluation of the Daylighting Performance in the Sound Barrier Tunnel)

  • 김임곤;최정민;박창섭;이경희
    • 한국태양에너지학회 논문집
    • /
    • 제25권2호
    • /
    • pp.35-43
    • /
    • 2005
  • This study aims to evaluate the natural lighting performance in the sound barrier tunnel. Therefore, to evaluate the daylighting performance, the combinations of 3 tunnel roof types which are flat-roof-type(type A), slope-roof-type(type B), arch-roof-type(type C) and 3 window types which are side-window-type(type 1), one-window-roof type(type 2), two-window-roof type(type 3) are evaluated by experimenting small scaled models. In this 9 cases of experiment, illuminance levels of each case are analyzed and evaluated. The conclusion of this study is that slope-roof-type(B) and arch-roof-type(C) is preferable to flat-roof-type(A) and one-window-roof-type(B) and two-window-roof-type(C) is preferable to side-window-type(A) for daylighting in the sound barrier tunnel.

두 연속 덕트를 전파하는 압축파의 수치해석적 연구 (Numerical study of compression waves passing through two-continuous ducts)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.

Flow Characteristics of Polluted Air in a Rectangular Tunnel using PIV and CFD

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.609-617
    • /
    • 2012
  • The flow characteristics of polluted air are analysed by comparing the results obtained from PIV(Particle Image Velocimetry) experiment and CFD(Computational Fluid Dynamics) commercial code. In order to simulate the polluted air flow, the olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}m^2/s$. The investigation has done in the range of Reynolds numbers of 870, 1730 and 2890 due to the inlet flow velocities of 0.3, 0.6, and 1.0 m/s, respectively. The average velocity and the pressure distributions are comparatively discussed with respect to the three different Reynolds numbers. The results show that the outlet flow rates at three different Reynolds numbers are equivalent of 165 to 167 percent of the inlet ones. The pressure drop occurs in the model closed at both end sides and the highest pressures at each Reynolds number are positioned at the top of the tunnel between the inlet and outlet.

모형 실험에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구 (Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Model Experiment)

  • 이대혁;김영근;이희근
    • 터널과지하공간
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 1998
  • Considering the mechanical cracking in the concrete lining of tunnels occurring in relatively short period of time after the construction, there is a need for the study on the mechanical behavior and the cracking characteristics of double lining support system(shotcrete and concrete lining). For the proposed study, downscaled lining models of Kyung-Bu High Speed Railway tunnels were tested. Most longitudinal cracks at about 93 percentage developed within 30 arch degree from the vault. Cracking load was about 30 percentage of the failure load and the deflection under the cracking load was 10 percentage of the deflection under the failure load. The overbreak around the vault contributed to the reduction of the capacity for cracking and failure by the percentage greater than the reduced effective depth. Of several rock block types considered in this research, the triangular block was the most critical, and the right triangular block under eccentric load was secondly critical for the stability of the tunnel lining system. The dimensionless support reaction curves were derived from the experimental results for single and double lining. The general equation to compute the designed flexural moment was modified.

  • PDF