• Title/Summary/Keyword: Tunnel Junction

Search Result 220, Processing Time 0.032 seconds

Magnetoresistance and Structural Properties of the Magnetic Tunnel Junction with Ternary Oxide Barrier (삼원계 산화 절연층을 가진 자기터널접합의 자기·구조적 특성에 관한 연구)

  • Park, Sung-Min;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.231-235
    • /
    • 2005
  • We studied the microstructural evolution of ZrTM-Al (TM=Nb and Ti) alloy films, MR and electrical properties of the MTJ with $ZrTM-AlO_x$ barrier as a function of Zr/TM ratio. We observed that the ternary-oxide barrier reduced the TMR ratio due mainly to the structural defects such as the surface roughness. The change in TMR ratio and $V_h$ with Zr/TM ratio exactly corresponds to the systematic changes in the microstructural variation. Although the MTJ with ternary oxide reduced the TMR and the electrical stabilities, the junction resistances decreased as the Ti and Nb concentration increased due to the band-gap reduction caused by the formation of extra bands

Magnetoresistance Characteristics of Magnetic Tunnel Junctions Consisting of Amorphous CoNbZr Alloys for Under and Capping Layers

  • Chun, Byong Sun;Lee, Seong-Rae;Kim, Young Keun
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.13-16
    • /
    • 2004
  • Magnetic tunnel junctions (MTJs) comprising amorphous CoNbZr layers have been investigated. $Co_{85.5}Nb_8Zr_{6.5}$(in at. %) layers were employed to substitute the traditionally used Ta layers with an emphasis given on under-standing underlayer effect. The typical junction structure was $SiO_2/CoNbZr$ or Ta 2/CoFe 8/IrMn 7.5/CoFe 3/Al 1.6 + oxidation/CoFe 3/CoNbZr or Ta 2 (nm). For both as-deposited state and after annealing, the CoNbZr-underlayered structure showed superior surface smoothness up to the tunnel barrier than Ta-underlayerd one (rms roughness of 0.16 vs. 0.34 nm). CoNbZr-based MTJs was proven beneficial for increasing thermal stability and increasing $V_h$ (the bias voltage where MR ratio becomes half) characteristics than Ta-based MTJs. This is because the CoNbZr-based junctions offer smoother interface structure than the Ta-based one.

Andreev reflection in metal- and ferromagnet-d-wave superconductor tunnel Junction

  • Kim, Sun-Mi;Hwang, Yun-Seok;Cha, Deok-Joon;Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.141-144
    • /
    • 2000
  • We report on the influence of d-wave pairing symmetry in high-T$_c$ superconductor by tunneling spectroscopy. The zerobias conductance peak(ZBCP) which is produced by tunneling through the ab-plane is observed on both of metal Au/YBa$_2$Cu$_3$O$_y$(N/S) tunnel junctions and ferromagnet Co/Au/ YBa$_2$Cu$_3$O$_y$(F/N/S) tunnel junctions. The effects of Andreev reflection on the differential conductance of each junctions are dependent on the tunnel direction. For the S/N/F junction, it appears the suppression of the ZBCP due to the suppression of Andreev reflection at the interface between a ferromagnetic material and a d-wave superconductor. By comparing these experimental results with recent theoretical works on Andreev reflection, the existence of Andreev bound state is verified in high-T$_c$ superconductor, due to the d-wave symmetry of the pair potential.

  • PDF

Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films (하부전극 산소 열처리를 통한 강유전체 터널접합 구조 메모리 소자의 전기저항 변화 특성 분석)

  • Bae, Soo Hyun;Yoon, So-Jung;Min, Dae-Hong;Yoon, Sung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.433-438
    • /
    • 2020
  • To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

The Study of the Tunnel Recombination Junction Properties in Multi-Junction Thin Film Silicon Solar Cells (다중 적층형 박막 실리콘 태양 전지의 터널 접합 특성 연구)

  • Hwang, Sun-Tae;Shim, Jenny H.;Chung, Jin-Won;Ahn, Seh-Won;Lee, Heon-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.62.2-62.2
    • /
    • 2010
  • 박막 실리콘 태양 전지는 저가격화 및 대량생산, 대면적화에 유리하다는 장점을 가지고 있다. 단점으로 지적되는 낮은 효율을 극복하기 위해 광흡수층의 밴드갭이 서로 다른 두 개 이상의 박막을 적층하여, 넓은 파장 대역의 빛을 효과적으로 흡수함으로써 광변환 효율을 올리기 위한 많은 연구가 이루어지고 있다. 서로 다른 밴드갭의 광흡수층을 가진 p-i-n 구조를 다중 적층하여 고효율의 태양 전지를 제작하기 위해서는 n-도핑층과, p-도핑층 간에 전자와 정공이 빠르게 재결합할 수 있는 터널 접합(Tunnel Recombination Junction)의 형성이 필수적이며, 이때 광손실이 최소화되도록 해야한다. 만약 터널 접합이 적절하게 형성되지 않으면 결합되지 않은 전자와 정공이 도핑층 사이에 쌓이게 되고, 도핑층 사이의 저항 증가로 태양 전지의 광변환 효율은 크게 하락한다. 이번 연구에서는 터널 접합이 잘 이루어지게 하기 위한 n-도핑층 및 p-도핑층 박막의 특성과, 터널 접합의 특성에 따른 적층형 태양 전지의 광효율 변화를 확인하였다. 광흡수층 및 도핑층은 TCO($SnO_2:F$, Asahi) 유리 기판 위에 PECVD를 사용하여 p-i-n 구조로 RF Power 조건에서 증착되었고, ${\mu}c$-Si 광흡수층의 경우에는 VHF Power 조건에서 증착되었다. 광흡수층이 a-Si/${\mu}c$-Si의 구조를 가지는 이중 접합 태양 전지에서 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층 사이의 터널 접합 실험 결과 n-도핑층 및 p-도핑층의 결정화도와 도핑 농도를 조절하여 터널 접합의 저항을 최소화했고, 터널 접합 특성이 이중 접합 셀의 광효율 특성과 유사한 경향을 보임을 확인하였다. 광흡수층이 a-Si/a-SiGe/${\mu}c$-Si의 구조를 가지는 삼중 접합 태양 전지 실험의 경우 a-Si과 a-SiGe 광흡수층 사이에 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층/a-SiC p-도핑층의 구조를 적용하여 터널 접합을 형성하였으며, ${\mu}c$-Si p-도핑층의 두께 및 박막 특성을 개선하여 광손실이 최소화된 터널 접합을 구현하였고, 삼중 접합 태양 전지에 적용되었다.

  • PDF

Results of Microsurgical Anterolateral Tunnel Approach for Cervical Disc Herniation (경추간판탈출증에 대한 미세 전측방 Tunnel Approach의 결과)

  • Jang, Woo-Young;Kim, Keun-Soo;Lee, Jung-Chung;Kim, Chul-Jin;Choi, Ha-Young;Xuan, Xiu-Nan;Han, Dong-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.5
    • /
    • pp.600-604
    • /
    • 2001
  • Objective : The authors report the microsurgical anterolateral tunnel approach for the treatment of the cervical disc diseases and its postoperative surgical results. Methods : All surgical procedures followed the method of classical microsurgical anterior discectomy. Small tunnel(7-8mm) was made on the disc space reaching to the posterior longitudinal ligament. The disc materials and bony spurs were removed through this tunnel. Thirty-one patients of cervical disc herniation(24 cases with pure disc herniation, 7 cases with combined cervical spondylosis) were evaluated on the symptoms, conformation in plain X-ray, C-T, and MRI. The follow up time was over 2 years. Results : Postoperatively the result(following the out come scale) was excellent and good in Twenty-nine patients. One with fair result showed remnant disc particle and spur and another one is combined with cord contusion. One patient with lesion in C 3-4 space and two cervicothoracic junction showed excellent result. Two patients with osteoporosis also showed good results. Cervical spine curvature and disc space height were not changed on the plain X-ray and MRI in all patients. Twenty-nine patients were discharged within 3 days after surgery without any postoperative complications. Conclusions : The microsurgical anterolateral tunnel approach could be indicated for the treatment of patients with cervical disc diseases and with difficulty in achieving interbody fusion(the higher cervical level and cervicothoracic junction, osteoporosis etc.).

  • PDF