• Title/Summary/Keyword: Tunnel Junction

Search Result 220, Processing Time 0.026 seconds

Single-Electron Pass-Transistor Logic with Multiple Tunnel Junctions and Its Hybrid Circuit with MOSFETs

  • Cho, Young-Kyun;Jeong, Yoon-Ha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.669-672
    • /
    • 2004
  • To improve the operation error caused by the thermal fluctuation of electrons, we propose a novel single-electron pass-transistor logic circuit employing a multiple-tunnel junction (MTJ) scheme and modulate a parameters of an MTJ single-electron tunneling device (SETD) such as the number of tunnel junctions, tunnel resistance, and voltage gain. The operation of a 3-MTJ inverter circuit is simulated at 15 K with parameters $C_g=C_T=C_{clk}=1\;aF,\;R_T=5\;M{\Omega},\;V_{clk}=40\;mV$, and $V_{in}=20\;mV$. Using the SETD/MOSFET hybrid circuit, the charge state output of the proposed MTJ-SETD logic is successfully translated to the voltage state logic.

  • PDF

Fabrication of Sub-Micron Size $Al-AlO_x-Al$ Tunnel Junction using Electron-Beam Lithography and Double-Angle Shadow Evaporation Technique (전자빔 패터닝과 double-angle 그림자 증착법을 이용한 sub-micron 크기의 $Al-AlO_x-Al$ 터널접합 제작공정개발)

  • Rehmana, M.;Choi, J.W.;Ryu, S.J.;Park, J.H.;Ryu, S.W.;Khim, Z.G.;Song, W.;Chong, Y.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.99-102
    • /
    • 2009
  • We report our development of the fabrication process of sub-micron scale $Al-AlO_x-Al$ tunnel junction by using electron-beam lithography and double-angle shadow evaporation technique. We used double-layer resist to construct a suspended bridge structure, and double-angle electron-beam evaporation to form a sub-micron scale overlapped junction. We adopted an e-beam insensitive resist as a bottom sacrificing layer. Tunnel barrier was formed by oxidation of the bottom aluminum layer between the bottom and top electrode deposition, which was done in a separate load-lock chamber. The junction resistance is designed and controlled to be 50 $\Omega$ to match the impedance of the transmission line. The junctions will be used in the broadband shot noise thermometry experiment, which will serve as a link between the electrical unit and the thermodynamic unit.

  • PDF

Effect of Co/Pd Multilayer on the Magnetoresistance of Perpendicularly Magnetized Magnetic Tunnel Junction (Co/Pd 다층막구조가 수직자기터널접합의 자기저항에 미치는 영향)

  • Kim, Seong-Dong;Lim, Dong-Won;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.271-275
    • /
    • 2006
  • We investigated the magnetoresistance of perpendicularly magnetized magnetic tunnel junction composed of Co/Pd multilayers. The magnetoresistance was maximized with Co electrodes of about 5 nm thickness, which evidenced the important role of the interface in tunneling process. Both the change in perpendicular magnetic anisotropy and improvement of junction resistance were observed with changing Co sublayers, while the spin scattering became dominant with increasing Pd sublayers.

Numerical analysis study of reinforced method (loop type) at the double-deck tunnel junction (복층터널 분기부에서의 보강공법(루프형 강선)에 따른 수치해석 연구)

  • Lee, Seok Jin;Park, Skhan;Lee, Jun Ho;Jin, Hyun Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.823-837
    • /
    • 2018
  • Congestion of the city with the rapid industrial development was accelerated to build complex social infrastructure. And numerous structures have been designed and constructed in accordance with these requirements. Recently, to solve complex urban traffic, many researches of large-diameter tunnel under construction downtown are in progress. The large-diameter tunnel has been developed with a versatile double-deck of deep depth tunnel. For the safe tunnel construction, ground reinforcement methods have been developed in the weakened pillar section like as junction of tunnel. This paper focuses on evaluation of the effects of new developed ground reinforcement methods in double-deck junction. The values of reinforcement determined from the existing and developed methods were compared to each other by numerical simulation.

Etch characteristics of MTJ materials using in CH4/N2O or CH3OH gas (CH4/N2O 및 CH3OH gas를 이용한 Magnetic Tunnel Junction 물질의 식각특성에 관한 연구)

  • Yang, Gyeong-Chae;Jeon, Min-Hwan;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.14-14
    • /
    • 2014
  • STT-MRAM의 구성물질인 magnetic tunnel junction의 효과적인 식각을 위하여 다양한 가스 조합을 연구하였다. 그 결과 $CH_4/N_2O$ gas 조합보다는 $CH_3OH$ gas 가 보다 향상된 식각 특성을 나타내었고 pulse duty ratio 변화와 기판온도 변화가 식각특성 향상에 영향을 주었음을 알 수 있었다.

  • PDF

Low power oxidation condition에서 제작된 magnetic tunnel junction의 특성

  • 이유종;이긍원;박상용;이제형;신경호
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.144-145
    • /
    • 2002
  • Al$_2$O$_3$층을 터널 장벽으로 사용하는 Magnetic Tunnel Junction(MTJ)시료의 특성에 가장 크게 작용하는 요인 중에 한 가지는 양질의 Al산화막 형성에 있다. Al산화막이 터널 장벽으로 제대로 된 역할을 하기 위해서는 Al층에 인접한 자성층에 영향을 미치지 않으면서 Al층을 균일하게 산화시킬 수 있는 조건이 만족되어야 하며, 이러한 $Al_2$O$_3$층의 제작에 가장 적합한 실험적 조건은 Al층의 산화에 Low power plasma를 사용하며, 산화 Chamber내부를 되도록 높은 분압의 산소 분위기로 유지시켜서 조금씩 장시간 동안 Al을 산화시키는 것이다. (중략)

  • PDF

Local Current Distribution in a Ferromagnetic Tunnel Junction Fabricated Using Microwave Excited Plasma Method (마이크로파 여기 프라즈마법으로 제조한 강자성 터널링 접합의 국소전도특성)

  • Yoon, Tae-Sick;Kim, Cheol-Gi;Kim, Chong-Oh;Masakiyo Tsunoda;Migaku Takahashi;Ying Li
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.47-52
    • /
    • 2003
  • Ferromagnetic tunnel junctions were fabricated by dc magnetron sputtering and plasma oxidation process. The local transport properties of the ferromagnetic tunnel junctions were studied using contact-mode Atomic Force Microscopy (AFM) and the local current-voltage analysis. Tunnel junctions with the structure of sub./Ta/Cu/Ta/NiFe/Cu/Mn$\_$75/Ir$\_$25//Co$\_$70/Fe$\_$30//Al-oxide were prepared on thermally oxidized Si wafers. Al-oxide layers were formed with microwave excited plasma using radial line slot antenna (RLSA) for 5 and 7 sec. Kr gas was used as the inert gas mixed with $O_2$ gas for the plasma oxidization. No correlation between topography and current image was observed while they were measured simultaneously. The local current distribution was well identified with the distribution of local barrier height. Assuming the gaussian distribution of the local barrier height, the ferromagnetic tunnel junction with longer oxidation time was well fitted with the experimental results. As contrast, in the case of the shorter time oxidation junction, the current mainly flow through the low barrier height area for its insufficient oxygen. Such leakage current might result in the decrease of tunnel magnetoresistance (TMR) ratio.

Etch Characteristics of Magnetic Tunnel Junction Stack Patterned with Nanometer Size for Magnetic Random Access Memory (자성 메모리의 적용을 위한 나노미터 크기로 패턴된 Magnetic Tunnel Junction의 식각 특성)

  • Park, Ik Hyun;Lee, Jang Woo;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.853-856
    • /
    • 2005
  • Inductively coupled plasma reactive ion etching of magnetic tunnel junction (MTJ) stack, which is one of the key elements in magnetic random access memory, was studied. The MTJ stacks were patterned in nanometer size by electron(e)-beam lithography, and TiN thin films were employed as a hard mask. The etch process of TiN hard mask was examined using Ar, $Cl_2/Ar$, and $SF_6/Ar$. The TiN hard mask patterned by e-beam lithography was first etched and then the etching of MTJ stack was performed. The MTJ stacks were etched using Ar, $Cl_2/Ar$, and $BCl_3/Ar$ gases by varying gas concentration and pressure.