• Title/Summary/Keyword: Tunnel Fire

Search Result 479, Processing Time 0.022 seconds

Experimental Study on the Interval of Emergency Exits in Long Traffic Tunnels (장대 교통터널의 피난연락갱 설치 간격에 관한 실험적 연구)

  • Yoo Yongho;Yoon Sungwook;Kim Jin;Yoon Chanhoon
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.61-70
    • /
    • 2005
  • The objective of this study was to analyze the smoke movement for the case of fire and to determine the interval between emergency exits in long tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was constructed by acrylic tubes and tests were carried out systematically. From the strong relationship between CO propagation time and distance through the tunnel, it was found that the optimal escaping time was 6 minutes in case of 20MW fire. But, regarding passengers' psychological state under fire, another one minute of delay time should be considered. Therefore, the total escaping time should be estimated by 5 minutes. The interval between the emergency exits for vehicle passengers was calculated by 250 m with respect to the 5 minute of escaping time.

Development and Performance of Cementitious Materials for Fire Resistance of Tunnel (터널 내화용 시멘트계 재료의 개발 및 성능 평가)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.265-273
    • /
    • 2006
  • This study aims at evaluation of the fire resistance performance of cementitious materials for fire protection of tunnel. For this purpose, the research procedure was divided into three parts. First, base mix proportion with different material type were determined by fire test. Second, the fire test of cementitious materials for fire resistance were performed on base mix proportions to evaluated their performance. Third, the performance of cementitious materials for fire resistance compare to the target value and existing commercial products. If the performance of developed cemetitious materials for fire resistance were satisfied the target value, this studies were stopped. But, this research return to first process if the performance of cementitious materials for fire resistance are not satisfied the target value. As a result of this study, the spalling did not happen for develop and existing commercial product. Also, developed cementitious materials for fire resistance are shown with excellent compressive strength, flexural strength, and bond strength, because it used a height density aggregate. And developed cementitious materials has sufficient resistance for fire.

Assessment of Fire-induced Damage to Tunnel Structural Members at Different Fire Scenarios (화재이력에 따른 터널구조물 시공재료의 화재손상 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Kwon, Jong-Wook;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.960-969
    • /
    • 2006
  • In this study, a series of fire tests was carried out to evaluate fire-induced damage to structural members in tunnels. From the tests, the loss amount of concrete materials by the RWS fire scenario was slightly bigger than by the RABT fire scenario. Especially under the RWS fire scenario where the maximum temperature is over 1,200, the loss of concrete materials was mainly induced by melting. Generally, the loss of materials in reinforced concrete was slightly smaller than that in unreinforced concrete. Depending upon an applied fire scenario, fire-induced damage to shotcrete was quite different. From the real-time investigation of a specimen surface by a digital camcorder, it was proved that the material loss under the RABT fire scenario was mainly induced by spalling. However, it was also revealed that although fire-induced damage in the initial heating stage under the RWS was so close to that under the RABT, the material loss under the RWS at the later stage after 50 minutes elapsed since fire initiation was induced not by spalling but by melting.

  • PDF

An analysis study for reasonable installation of tunnel fire safety facility (터널 방재설비의 합리적 설치를 위한 분석적 연구)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Park, Byoung-Jik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.243-248
    • /
    • 2015
  • Domestic road and railroad construction have been increasingly growing and for reasons of mitigating traffic congestion, urban plan and refurbishment project, deeper and longer tunnels have been built. The event of fire is the most fatal accident in a tunnel, and it can be very disastrous with a high possibility. In this study, QRA (Quantitative Risk Analysis) which is one of quantitative risk analysis approaches was applied to tunnel fire safety design and the evaluation of QRA cases and the cost comparison of QRA methods were carried out. In addition analysis of risk reduction effect of tunnel fire safety system was conducted using AHP (Analytic Hierarchy Process) and the priority of major factors that could mitigate the risk in tunnel fire was presented. As a result, significant cost reduction effect could be obtained by incorporating QRA and it is expected to design fire safety system rationally. The priority of fire safety system based on risk mitigation effect by fire safety system considering the cost is in order of water pipe, emergency lighting, evacuation passage and smoke control system.

The effect of a risk factor on quantitative risk assessment in railway tunnel (철도터널에서 위험인자가 정량적 위험도 평가에 미치는 영향)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • Quantitative risk assessment (QRA) of railway is to create a variety of scenario and to quantify the degree of risk by a result of the product of accident frequency and accident. Quantitative risk Assessment is affected by various factors such as tunnel specifications, characteristics of the fire, and relation of smoke control and evacuation direction. So in this study, it is conducted that how the way of smoke control and the relation of smoke control and evacuation direction affect quantitative risk assessment with variables (the tunnel length (2, 3, 4, 5, 6 km) and the slope (5, 15, 25‰)). As the result, in a train fire at the double track tunnel (Area = $97m^2$), it is most efficient to evacuate to the opposite direction of smoke control regardless of the location of train in train fire. In addition, under the same condition, index risk in mechanical ventilation up to 1/10.

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF

An Experimental Study on the Critical Velocity Considering the Slope in Tunnel Fire (경사터널내 화재 발생시 경사도가 임계속도에 미치는 영향에 관한 연구)

  • Kim, Seung-Ryoul;Jang, Yong-Jun;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • An experimental study has been conducted to investigate the effect of tunnel slope on critical velocity by using the model funnel of the 1/20 reduced-scale applying the Floods scaling law. the square liquid pool burners were used for methanol, acetone and n-heptane fires. tunnel. Tunnel slopes varied as five different degrees $0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$ and $8^{\circ}$. The mass loss rate and the temperatures are measured by a load celt and K-type thermocouples for tunnel slope. Present study results in bigger the critical velocity than the research of Atikinson and Wu using the propane burner. Therefore, when estimating the critical velocity in slope tunnel, the variations of the heat release rate is an important factor. The reason is the ventilation velocity directly affects variation of heat release rate when slope tunnel fire occurred.

A Study on the Integrated Ventilation Control Algorithm for Road Tunnels (다중터널의 통합환기제어 알고리즘 연구)

  • Kim, Tae-Hyung;Hong, Dae-Hie;Chu, Baek-Suk;Kim, Dong-Nam;Keum, Jae-Sung;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.405-409
    • /
    • 2008
  • Over 70% of the land is mountains in Korea, so that many roadways naturally includes tunnels. The air flow inside tunnel has complex characteristics, such that a new flow field is formed by following vehicles passing through the tunnel before previous flow field is stabilized. Due to these time delayed-transient characteristics, the ventilation facility requires the complex control algorithm that can handle adaptive and predictive controls. Also, it needs to be closely related to the disaster prevention system. The technology to integrate these system determines the success of TGMS. The pollutant levels exhausted from the vehicles passing through tunnel depend on vehicle years and passing velocity. They also depend on the slope and altitude of the tunnel. In order to solve this problem, an algorithm for estimating the compensating factors for calculating on design capacity of ventilation facilities was developed. Also, an integrated ventilation control algorithm with disaster prevention program to operate several tunnels was developed based on TGMS.

  • PDF

Analysis of Smoke Control According to Jet Fan Location in Straight Long Tunnel (제트 팬 설치 위치에 따른 직선터널 내의 제연해석)

  • Byun, Ju-Suk;Lim, Hyo-Jae;Kang, Shin-Hyung;Lee, Jin-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.662-668
    • /
    • 2007
  • In this study, jet fans are installed with 4 cases in the straight long tunnel; inlet-side setup, middle-side setup, outlet-side setup, and dispersion setup. A bus is selected as fired car, of which fire size is 20MW. And fired car locates at 100m, 700m, 1500m position from tunnel inlet, respectively. FLUENT, commercial finite-volume code, is used to analyze the performance. The velocity profile, $CO_2$ concentration, temperature distribution are examined for analysis. Performance of smoke control is compared by the backlayering length. Consequently, inlet-side setup of jet fans is a little more efficient than other cases considering the fire occurrence frequency in tunnel.

Experimental Study on the Determination of Critical Velocity for the Case of Fire in Long Traffic Tunnels (장대 교통터널 화재시 임계속도 결정에 관한 실험적 연구)

  • Yoon Chanhoon;Yoon Sungwook;Yoo Yongho;Kim Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, scaled model tests were carried out to decide the optimal critical velocity, to prevent back layering in the case of fire in a long traffic tunnel. Realistic estimates were made for the time required for people to escape ken the tunnel and far the time required by the ventilation operator to increase the system speed to full capacity. The analysis, predicts that the emergency ventilation will start about 240 seconds after the tunnel fire. It was also found that prevention of back layering would occur within 4 minutes after fan operation. To find out optimal critical velocity, a 1/50 scaled model tunnel(diameter : 0.2 m and length : 20 m) based on the Froude similarity technique was constructed. Changing $\beta$ values in the Tetzner's equation, smoke propagation was observed. From the experiment, it was concluded that using a $\beta$ value of 0.5 to prevent back layering successfully allowed time for safe evacuation.