• Title/Summary/Keyword: Tuning of membership function

Search Result 57, Processing Time 0.026 seconds

Genetic-Fuzzy Controller for Induction Motor Speed Control (유도전동기의 속도제어를 위한 유전-퍼지 제어기)

  • Kwon, Tae-Seok;Kim, Chang-Sun;Kim, Young-Tae;Oh, Won-Seok;Sin, Tae-Hyun;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2742-2744
    • /
    • 1999
  • In this paper, an auto-tuning method for fuzzy logic controller based on the genetic algorithm is presented. In the proposed method, normalization parameters and membership function parameters of fuzzy controller are translated into binary bit-strings, which are processed by the genetic algorithm in order to be optimized for the well-chosen objective function (i.e. fitness function). To examine the validity of the proposed method. a genetic algorithm based fuzzy controller for an indirect vector control of induction motors is simulated and experiment is carried out. The simulation and experimental results show a significant enhancement in shortening development time and improving system performance over a traditional manually tuned fuzzy logic controller.

  • PDF

A Fuzzy Controller for the Steam Generator Water Level Control and Its Practical Self-Tuning Based on Performance (증기발생기 수위제어를 위한 퍼지제어기 구현 및 제어성능지수를 이용한 제어기 의 Self-Tuning)

  • Na, Nan-Ju;Bien, Zeun-Gnam
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.317-326
    • /
    • 1995
  • The oater level control system of the steam generator in a pressurized water reactor and its control Problems are analysed. In this work a stable control strategy Particularly during low Power operation based on the fuzzy control method is studied. The control strategy employs substitutional information using the bypass valve opening instead of incorrectly measured signal at the low How rate as the fuzzy variable of the flow rate during low power operation, and includes the flexible scale adjusting method for fast response at a large transient. A self-tuning algorithm based on the control performance and the descent method is also suggested for tuning the membership function scale. It gives a practical way to tune the controller under real operation. Simulation was carried out on the Compact Nuclear Simulator set up at Korea Atomic Energy Research Institute and its result showed the good performance of the controller and effectiveness of its tuning.

  • PDF

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF

The Tuning Method on Consequence Membership Function of T-S Type FLC (T-S형 퍼지제어기의 후건부 멤버십함수 동조방법)

  • Choi, Han-Soo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.264-268
    • /
    • 2011
  • This paper presents a Takagi-Sugeno (T-S) type Fuzzy Logic Controller (FLC) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. The parameters are tuned with gradient algorithm. The parameters are changed depending on output. The simulation results demonstrate the usefulness of this T-S type 3 rule fuzzy controller.

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계)

  • 이대근;오성권;장성환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

Construction of Adaptive Fuzzy Controller with Neural Network Architecture (신경회로망 구조를 가진 적응퍼지제어기의 구축)

  • 홍윤광;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.249-252
    • /
    • 1996
  • Fuzzy logic has been successfully used for nonlinear control systems. However, when the plant is complex or expert knowledge is not available, it is difficult to construct the rule bases of fuzzy systems. In this paper, we propose a new method of how to construct automatically the rule bases using fuzzy neural network. Whereas the conventional methods need the training data representing input-output relationship, the proposed algorithm utilizes the gradient of the object function for the construction of fuzzy rules and the tuning of membership functions. Experimental results with the inverted pendulum show the superiority of the proposed method in comparison to the conventional fuzzy controller.

  • PDF

The Optimal Design of HFC by means of GAs (유전자 알고리즘을 이용한 HFC의 최적설계)

  • 이대근;오성권;장성환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.369-369
    • /
    • 2000
  • Control system by means of fuzzy theory has demonstrated its robustness in applying to the high-order and nonlinear dynamic system in that it can utilizes the human expert knowledges in system design. In this paper, first, the design methodology of HFC combined PID controller with fuzzy controller by membership function of weighting coefficient is proposed. Second, Second, an auto-tuning algorithms utilizing the simplified reasoning method and genetic algorithms is presented to improve the performance of hybrid fuzzy controller. Especially, in order to obtain the optimal scaling factors and PID parameters of HFC using GA based on advanced initial individual, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The proposed HFC is evaluated and discussed in ITAE, overshoot and rising time to show applicability and superiority with simulation results.

  • PDF

Automatic GA fuzzy modeling with fine tuning method

  • Son, You-Seok;Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.189-192
    • /
    • 1996
  • This paper presents a systematic approach to identify a linguistic fuzzy model for a multi-input and single-output complex system. Such a model is composed of fuzzy rules, and its output is inferred by the simplified reasoning. The structure and membership function parameters for a fuzzy model are automatically and simultaneously identified by GA (Genetic Algorithm). After GA search, optimal parameters for the fuzzy model are finely tuned by a gradient method. A numerical example is provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce the linguistic fuzzy model with higher accuracy and a smaller number of rules than the ones achieved previously in other methods.

  • PDF