• Title/Summary/Keyword: Tungsten dispersion

Search Result 23, Processing Time 0.022 seconds

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.

Characteristics of tungsten coated graphite using vacuum plasma spraying method

  • Lim, Hyeonmi;Kang, Boram;Kim, Hoseok;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.1-200.1
    • /
    • 2016
  • Tungsten coatings on the graphite (CX-2320) were successfully deposited using the vacuum plasma spraying (VPS) method. An optimum coating procedure was developed and coating thicknesses of $409{\mu}m$ (without an interlayer) and $378{\mu}m$ (with an interlayer) were obtained with no cracks and no signs of delamination. The mechanical characteristics and microstructure of the tungsten coating layers were investigated using a Vickers hardness tester, FE-SEM, EDS, and XRD. The effect of a titanium interlayer on the properties of the tungsten coating was investigated. It was shown that the titanium interlayer prevented the diffusion of carbon to the tungsten layer, thereby suppressing the formation of tungsten carbide. Vickers hardness data yielded values that were 62.5 ~ 80.46% of those for bulk tungsten, indicating that tungsten coatings on graphite can be utilized as a plasma-facing material. High heat flux tests were performed by using thermal plasma with a maximum flux of $10MW/^2$. Vickers hardness after the heat flux test is performed to see a change in the mechanical properties. The formationof a tungsten carbide and the effect of the titanium interlayer for the diffusion barrier are investigated by using energy dispersion spectroscopy (EDS).

  • PDF

Dispersion Pattern Simulation of Tungsten Impactors According to Mass and Shape of Explosives (폭약 질량과 형상에 따른 텅스텐 충격자의 분산 패턴 시뮬레이션)

  • Sakong, Jae;Woo, Sung-Choong;Bae, Yong-Woon;Choi, Yeoun-Jin;Cha, Jung-Phil;Ga, In-Han;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1325-1333
    • /
    • 2014
  • The dispersion pattern of a near miss neutralizer has a great effect on the disablement of a threatening projectile. This study numerically investigated the dispersion pattern of cylindrical tungsten impactors by an explosion in the near miss neutralizer. The mass and shape of the explosive were considered as influencing factors on the dispersion pattern. The explosives were set using two shape models: a parallel shape with the same upper and lower thicknesses and a tapered shape with different upper and lower thicknesses. In the simulation results, the dispersed impactors formed a ring-shaped pattern on a two-dimensional plane in an arbitrary space. In addition, the fire net area increased with the explosive mass when the explosive shapes were identical. In particular, the tapered shape explosive formed a larger fire net area than the parallel shape explosive. Based on the analysis of the fire net area along with the dispersion density, both the explosive mass and shape representing the physical characteristics should be considered for controlling the dispersion pattern of impactors in a near miss neutralizer.

Thermoelectric Properties of the Hot-pressed Bi2(Te0.9Se0.1)3 with Dispersion of Tungsten Powders (텅스텐 분말을 분산시킨 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성)

  • Roh, M.R.;Choi, J.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.55-61
    • /
    • 2011
  • The n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ powers were fabricated by mechanical alloying, mixed with tungsten(W) powders, and hot-pressed at $550^{\circ}C$ for 30 minutes. Thermoelectric properties of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ were characterized as a function of the volume percent of tungsten-powder addition. The power factor of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ was $21.9{\times}10^{-4}$ $W/m-K^2$, and was improved to $30.5{\times}10^{-4}$ $W/m-K^2$ by dispersion of 1 vol% W powders. While the dimensionless figure-of-merit of the $Bi_2(Te_{0.9}Se_{0.1})_3$ hot-pressed without dispersion of W powders was measured as 0.52 at room temperature, it became substantially enhanced to 0.95 with addition of 1 vol% W powders.

Effect of oxidants and additives on the polishing performance in tungsten CMP slurry (텅스텐 CMP 연마액에서 산화제와 첨가제가 연마 성능에 미치는 영향)

  • Lee, Jae Seok;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.394-399
    • /
    • 2006
  • The polishing performance and the relationships of electrochemistry depending upon oxidizers and additives in the tungsten CMP slurry used in semiconductor industry were investigated. Hydrogen peroxide, ferric nitrate and potassium iodate were used as oxidizers and they showed different oxidation reactions on tungsten film depending on the kind of oxidizers and pH of slurry. The differences influenced the polishing performance. Etching reaction was predominated in the hydrogen peroxide. However, passivation reaction was prevailed in ferric nitrate and potassium iodate. TMAH and KOH raised the potential energy and removal rate of tungsten, and improved a dispersion characteristic of slurry by increasing absolute value of zeta potential. Addition of 100 ppm of poly(acrylic acid) of M.W. 250,000 improved dispersion ability.

Application of Taguchi method in optimization of process parameters of ODS tungsten heavy alloys

  • Sayed, Mohamed A.;Dawood, Osama M.;Elsayed, Ayman H.;Daoush, Walid R.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • In the present work, a design of experiment (DOE) technique using Taguchi method, has been applied to optimize the properties of ODS tungsten heavy alloys(WHAs). In this work Taguchi method involves nine experiments groups for four processing parameters (compaction pressure, sintering temperature, binding material type, and oxide type) with three levels was implemented. The signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to obtain the optimal process parameter levels and to analyze the effect of these parameters on density, electrical conductivity, hardness and compressive strength values. The results showed that all the chosen factors have significant effects on all properties of ODS tungsten heavy alloys samples. The density, electrical conductivity and hardness increases with the increase in sintering temperature. The analysis of the verification experiments for the physical properties (density and Electrical conductivity) has shown that Taguchi parameter design can successfully verify the optimal parameters, where the difference between the predicted and the verified values of relative density and electrical conductivity is about 1.01% and 1.15% respectively.

Enhanced mechanical properties and interface structure characterization of W-La2O3 alloy designed by an innovative combustion-based approach

  • Chen, Pengqi;Xu, Xian;Wei, Bangzheng;Chen, Jiayu;Qin, Yongqiang;Cheng, Jigui
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1593-1601
    • /
    • 2021
  • Oxide dispersion strengthening (ODS) tungsten alloys are highly desirable in irradiation applications. However, how to improve the properties of ODS-tungsten alloys efficiently has been worth studying for a long time. Here we report a nanostructuring approach that achieves W-La2O3 alloy with a high level of flexural strength and Vickers hardness at room temperature, which have the maximum value of 581 MPa and 703 Hv, respectively. This method named solution combustion synthesis (SCS) can generate 30 nm coating structures W-La2O3 composite powders by using Keggin-type structural polyoxometalates as raw materials in a fast and low-cost process. The composite powder can be fabricated to W-La2O3 alloy with an optimal microstructure of submicrometric W grains coexisting with nanometric oxide particles in the grain interior, and a stability interface structure of grain boundaries (GBs) by forming transition zones. The method can be used to prepare new ODS alloys with excellent properties in the future.

Effect of C/Ti Atomic Ratio of TiCx Raw Powder on the Properties of Ti-Mo-W-TiC Sintered Hard Alloy

  • Nakahara, Kenji;Sakaguchi, Shigeya
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.109-110
    • /
    • 2006
  • We have studied the effect of C/Ti atomic ratio of TiCx (x=0.5, 0.75 and 1.0) raw powder on the properties of the Ti-Mo-WTiC sintered hard alloy. The decrease of C/Ti atomic ratio accelerated the densification in the sintering process. The hardness was remarkably improved up to 1350HV with decreasing the C/Ti atomic ratio because of increase of TiCx phase volume content and its fine dispersion. From the results of electro-chemical tests in acid and 3% NaCl solutions, it was obvious that every alloy had excellent corrosion resistance, which meant about 200 times better than that of WC-Co cemented carbide.

  • PDF

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

A Study on tole Improvement of the Slurry Dispersibility in CMP (CMP 슬러리의 분산성 향상에 관한 연구)

  • Cho, Sung-Hwan;Kim, Hyoung-Jae;Kim, Ho-Youn;Kim, Heon-Deok;Seo, Kyoung-Jun;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1535-1540
    • /
    • 2001
  • This study presents the possibility of scratch reduction on wafer in CMP by applying the ultrasonic and megasonic energy into the slurry which might contain large abrasive particles. Experiments were conducted to verify the dispersion ability of agglomerated particles by applying ultrasonic, megasonic waves and analyze the particle distribution of used slurry in case, of sonic energy assisted or none. And the dispersion stability of megasonic waves was investigated through the experiment of stability of the dispersed slurry, Finally, to confirm that the distribution of particles in slurry by ultrasonic waves was actually related to scratches on wafer when CMP was done, tungsten blanket wafer was processed, by CMP to compare and investigate scratches on wafer.