• 제목/요약/키워드: Tungsten

검색결과 1,583건 처리시간 0.029초

회중석의 염소화 생성물로부터 고순도 WO3의 합성 (Synthesis of High Purity Tungsten Oxide with Tungsten Chloride from the Chlorination of Scheelite)

  • 엄명헌;박용성;이철태
    • 공업화학
    • /
    • 제4권4호
    • /
    • pp.798-806
    • /
    • 1993
  • 본 연구는 유동층 반응기에서 회중석의 염소화 생성물인 텅스텐염화물로부터 고순도 tungsten oxide를 합성하기 위해 수행하였다. 텅스텐염화물은 용해시작 불과 1분 이내에 거의 완전히 $H_2O_2$ 용액에서 용해되었으며 적정용해조건은, $H_2O_2$의 농도 0.5%, 용해온도 $15^{\circ}C$, 텅스텐 염화물 0.5g에 대한 $H_2O_2$용액의 양은 30ml이었다. 이 조건하에서 얻어진 용해 생성물로부터 제조되어진 텅스텐 산화물은 순도 99.53%의 $WO_3$였다.

  • PDF

소결첨가재에 의한 텅스텐의 기계적 특성평가 (Evaluation on Mechanical Properties of Tungsten by Sintering Additive Content)

  • 이상필;이진경
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.621-626
    • /
    • 2022
  • Tungsten is a high melting point metal unlike other steel materials, and it is difficult to manufacture because of its high melting temperature. In this study, pressure sintering process method was applied to manufacture the tungsten materials at low temperature. Therefore, it is necessary to densify the sintered material by using a sintering additive. Studies have been conducted on how the amount of titanium for sintering tungsten affects the mechanical properties of tungsten in this study. In order to secure the densification mechanism of tungsten powder during the sintering process, the characteristics of the sintered tungsten material according to the change of titanium content were evaluated. It was investigated the relationship between sintering parameters and mechanical properties for densification of microstructures. The sintered tungsten materials according to sintering additive content showed high sintered density (about 16.31g/cm3) and flexural strength (about 584 MPa) when the content of sintering additive was 3 wt%. However, as the content of the sintering additive increases, mechanical property of flexural strength is decreased, and the porosity is increased due to the heterogeneous sintering around titanium.

초미립 WC-Graphene-Al2O3 복합재료 소결 및 기계적 성질 (Mechanical Properties and Sintering of Ultra Fine WC-Graphene-Al Composites)

  • 손인진
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.206-214
    • /
    • 2023
  • Tungsten carbide has many industrial applications due to its high electrical and thermal conductivity, high melting temperature, high hardness and good chemical stability. Because tungsten carbide is difficult to sinter, it is sintered with nickel or cobalt as a binder and is currently used in nozzles, cutting tools, and molds. Alumina is reported to be a viable binder for tungsten carbide due to its higher oxidation resistance and lower cost than nickel and cobalt. The ultrafine tungsten carbide-graphene-alumina composites were rapidly sintered in a high frequency induction heating active sintering unit. The microstructure and mechanical properties (fracture toughness and hardness) of the composites were investigated and analyzed by Vickers hardness tester and electron microscope. Since the high-frequency induction heating sintering method enables high-speed sintering, ultrafine composites can be prepared by preventing grain growth. In the tungsten carbide-graphene-alumina composites, the grain size of tungsten carbide increased with the amount of alumina participation. The hardness and fracture toughness of the tungsten carbide-5% graphene- x% alumina (x = 0, 5, 10,15) composites were 5.1, 8.6, 8.6, and 8.4 MPa-m1/2 and 2384, 2168, 2165, and 2102 kg/mm2, respectively. The fracture toughness increased without a significant decrease in hardness. Sinterability was improved by adding alumina to tungsten carbide-graphene.

초경 그린파트 마이크로 절삭가공 특성 분석 (Investigation of Micro Cutting Characteristics for Tungsten-Carbide Green Part)

  • 김건희;정우철;윤길상;허영무;권영삼;조명우
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.191-196
    • /
    • 2010
  • Tungsten-carbide as typical difficult-to-cut material has excellent mechanical properties such as high thermal resistivity, mechanical strength and chemical durability. However, it is next to impossible for tungsten-carbide to be fabricated the needed parts by cutting process. In this study, for establishing the micro fabrication method of tungsten-carbide for micro injection or compression molding core, the investigation on micro cutting characteristics of tungsten-carbide green part which is made by powder injection molding process and easy to cut relatively was performed. For this, micro endmilling experiments of tungsten-carbide green part were performed according to various cutting conditions. Finally, the wear trend of micro endmill and the appearance of micro rib according to feed-rate and cutting depth per step were analyzed through SEM images of micro cutting feature and microscope images of micro tools.

Study on sputtering yield of tungsten with different particle sizes: Surface roughness dependence

  • Kwon, Tae Hyun;Park, Sangjune;Ha, Jeong Min;Youn, Young-Sang
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1939-1941
    • /
    • 2021
  • The sputtering yield of tungsten pellets composed of different particle sizes of <1, 12, 44-74, and 149-297 ㎛ was systematically investigated by bombardment with Ar+ ions accelerated at 2.0 keV in an ultra-high vacuum chamber. We found that the tungsten sample fabricated from larger particles had a higher surface roughness, based on the surface profile results. Using the data of the surface roughness for the four types of tungsten pellets, we confirmed that the sputtering yield for a tungsten pellet with the highest surface roughness was 7 times lower than that of the lowest surface roughness. This could be due to the redeposition of sputtered tungsten particles onto neighboring asperities.

Powder Metallurgy of Tungsten Alloy

  • Ke, Zhang;Chun, Ge-Chang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1151-1152
    • /
    • 2006
  • Preparation of tungsten powder, sorts of tungsten alloys and their application in economy are made a summary in this paper.

  • PDF

화학기상응축공정에 의한 WS2 나노입자의 합성 및 특성평가 (Synthesis and Characterization of WS2 Nanoparticles by Chemical Vapor Condensation)

  • 이동원;김주형;올레그토로츠코;윤중열;김병기
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.314-319
    • /
    • 2008
  • Nano-sized tungsten disulfide ($WS_2$) powders were synthesized by chemical vapor condensation (CVC) process using tungsten carbonyl ($W(CO)_6$) as precursor and vaporized pure sulfur. Prior to the synthesis of tungsten disulfide nanoparticles, the pure tungsten nanoparticles were produced by same route to define the optimum synthesis parameters, which were then successfully applied to synthesize tungsten disulfide. The influence of experimental parameters on the phase and chemical composition as well as mean size of the particles for the produced pure tungsten and tungsten disulfide nanoparticles, were investigated.

익스플리시트 유한요소법을 이용한 텅스텐합금의 동적특성에 관한 연구 (A Study on the Dynamic Characteristics of Tungsten Alloy using Explicit FEM)

  • 황두순;노병래;홍대훈;홍성인
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.55-61
    • /
    • 2000
  • Tungsten heavy metal is characterized bi a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as for defense purposes(kinetic energy penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

  • PDF

Sputtering법으로 제조된 Tungsten Nitride 박막의 저항변화에 미치는 급속 열처리 영향 (Effect of Rapid Thermal Annealing on the Resistivity Changes of Reactively Sputtered Tungsten Nitride Thin Film)

    • 한국재료학회지
    • /
    • 제10권1호
    • /
    • pp.29-33
    • /
    • 2000
  • 비정질 WNx 박막이 반응성 스퍼터링법으로 제조되었다. 비정질 형성을 위한 질소의 농도범위는 10~40at%이었다. 비정질 W(sub)67N(sub)33 박막은 1273K에서 1분 동안 급속 열처리되어 저항이 낮은 등축정의 $\alpha$-텅스텐 상과 과잉의 질소로 변태되었다. 이러한 박막의 저항은 순수한 텅스텐 박막과 유사하였다. $\alpha$-텅스텐 상으로부터 방출된 과잉의 질소는 $\alpha$-텅스텐/다결정 실리콘의 계면에 편석되었다. 편석된 질소는 Si$_3$N$_4$나노 결정으로 균일한 확산 장벽층을 형성시켰고, 저항이 높은 텅스텐 실리사이드의 반응을 억제하였다.

  • PDF