Browse > Article
http://dx.doi.org/10.1016/j.net.2020.12.024

Study on sputtering yield of tungsten with different particle sizes: Surface roughness dependence  

Kwon, Tae Hyun (Department of Chemistry, Yeungnam University)
Park, Sangjune (Department of Chemistry, Yeungnam University)
Ha, Jeong Min (Department of Chemistry, Yeungnam University)
Youn, Young-Sang (Department of Chemistry, Yeungnam University)
Publication Information
Nuclear Engineering and Technology / v.53, no.6, 2021 , pp. 1939-1941 More about this Journal
Abstract
The sputtering yield of tungsten pellets composed of different particle sizes of <1, 12, 44-74, and 149-297 ㎛ was systematically investigated by bombardment with Ar+ ions accelerated at 2.0 keV in an ultra-high vacuum chamber. We found that the tungsten sample fabricated from larger particles had a higher surface roughness, based on the surface profile results. Using the data of the surface roughness for the four types of tungsten pellets, we confirmed that the sputtering yield for a tungsten pellet with the highest surface roughness was 7 times lower than that of the lowest surface roughness. This could be due to the redeposition of sputtered tungsten particles onto neighboring asperities.
Keywords
Tungsten; Sputtering yield; Surface roughness; Fusion power; Divertor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, W.R. Wampler, D.G. Whyte, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (2001) 1967-2137.   DOI
2 F. Ding, G.-N. Luo, X. Chen, H. Xie, R. Ding, C. Sang, H. Mao, Z. Hu, J. Wu, Z. Sun, L. Wang, Y. Sun, J. Hu, E.T. the, Plasma-tungsten interactions in experimental advanced superconducting tokamak (EAST), Tungsten 1 (2019) 122-131.   DOI
3 R. Toschi, Nuclear fusion, an energy source, Fusion Eng. Des. 36 (1997) 1-8.   DOI
4 J. Ongena, G.V. Oost, Energy for future centuries: will fusion Be an inexhaustible, safe, and clean energy source? Fusion Sci. Technol. 45 (2004) 3-14.   DOI
5 C. Ren, Z.Z. Fang, H. Zhang, M. Koopman, The study on low temperature sintering of nano-tungsten powders, Int. J. Refract. Metals Hard Mater. 61 (2016) 273-278.   DOI
6 J. Jussila, F. Granberg, K. Nordlund, Effect of random surface orientation on W sputtering yields, Nucl. Mater. Energy 17 (2018) 113-122.   DOI
7 A. Kallenbach, R. Neu, R. Dux, H.U. Fahrbach, J.C. Fuchs, L. Giannone, O. Gruber, A. Herrmann, P.T. Lang, B. Lipschultz, C.F. Maggi, J. Neuhauser, V. Philipps, T. Putterich, V. Rohde, J. Roth, G. Sergienko, A. Sips, A.U. Team, Tokamak operation with high-Z plasma facing components, Plasma Phys. Contr. Fusion 47 (2005) B207-B222.   DOI
8 J. Roth, J. Bohdansky, W. Ottenberger, Unity yield conditions for sputtering of graphite by carbon ions, J. Nucl. Mater. 165 (1989) 193-198.   DOI
9 D. Naujoks, K. Asmussen, M. Bessenrodt-Weberpals, S. Deschka, R. Dux, W. Engelhardt, A.R. Field, G. Fussmann, J.C. Fuchs, C. Garcia-Rosales, S. Hirsch, P. Ignacz, G. Lieder, K.F. Mast, R. Neu, R. Radtke, J. Roth, U. Wenzel, Tungsten as target material in fusion devices, Nucl. Fusion 36 (1996) 671-687.   DOI
10 Y. Hirooka, M. Bourham, J.N. Brooks, R.A. Causey, G. Chevalier, R.W. Conn, W.H. Eddy, J. Gilligan, M. Khandagle, Y. Ra, Evaluation of tungsten as a plasma-facing material for steady state magnetic fusion devices, J. Nucl. Mater. 196-198 (1992) 149-158.   DOI
11 T. Putterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O'Mullane, H.P. Summers, Calculation and experimental test of the cooling factor of tungsten, Nucl. Fusion 50 (2010), 025012.   DOI
12 M. Hellwig, M. Koppen, A. Hiller, H.R. Koslowski, A. Litnovsky, K. Schmid, C. Schwab, R.A. De Souza, Impact of surface roughness on ion-surface interactions studied with energetic carbon ions 13C+ on tungsten surfaces, Condensed Matter 4 (2019) 29.   DOI
13 H. Xie, R. Ding, A. Kirschner, J.L. Chen, F. Ding, H.M. Mao, W. Feng, D. Borodin, L. Wang, ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges, Phys. Plasmas 24 (2017), 092512.   DOI
14 B. Wielunska, M. Mayer, T. Schwarz-Selinger, A.E. Sand, W. Jacob, Deuterium retention in tungsten irradiated by different ions, Nucl. Fusion 60 (2020), 096002.   DOI
15 R. Neu, R. Dux, A. Geier, O. Gruber, A. Kallenbach, K. Krieger, H. Maier, R. Pugno, V. Rohde, S. Schweizer, Tungsten as plasma-facing material in ASDEX Upgrade, Fusion Eng. Des. 65 (2003) 367-374.   DOI
16 I. Bizyukov, K. Krieger, N. Azarenkov, U.v. Toussaint, Relevance of surface roughness to tungsten sputtering and carbon implantation, J. Appl. Phys. 100 (2006) 113302.   DOI
17 A. Kreter, S. Brezinsek, T. Hirai, A. Kirschner, K. Krieger, M. Mayer, V. Philipps, A. Pospieszczyk, U. Samm, O. Schmitz, B. Schweer, G. Sergienko, K. Sugiyama, T. Tanabe, Y. Ueda, P. Wienhold, Effect of surface roughness and substrate material on carbon erosion and deposition in the TEXTOR tokamak, Plasma Phys. Contr. Fusion 50 (2008), 095008.   DOI
18 A.V. Chankin, D.P. Coster, R. Dux, Monte Carlo simulations of tungsten redeposition at the divertor target, Plasma Phys. Contr. Fusion 56 (2014), 025003.   DOI
19 Y. Li, Y. Yang, M.P. Short, Z. Ding, Z. Zeng, J. Li, Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials, Nucl. Fusion 57 (2017), 016038.   DOI
20 H. Nakamura, S. Saito, A.M. Ito, A. Takayama, Tungsten-surface-structure dependence of sputtering yield for a noble gas, Plasma Fusion Res. 11 (2016) 2401080.   DOI
21 Y. Yamamura, H. Tawara, Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence, Atomic Data Nucl. Data Tables 62 (1996) 149-253.   DOI
22 M. Kustner, W. Eckstein, V. Dose, J. Roth, The influence of surface roughness on the angular dependence of the sputter yield, Nucl. Instrum. Methods Phys. Res., Sect. B 145 (1998) 320-331.   DOI
23 R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment, Springer-Verlag Berlin Heidelberg, 2007.