• Title/Summary/Keyword: Tuned Circuits

Search Result 24, Processing Time 0.021 seconds

A 2.4GHz Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통한 백게이트 튜닝 2.4 GHz VCO 설계)

  • Oh, Beom-Seok;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a $0.25-{\mu}m$ standard CMOS Process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier, Total power dissipation is 7.5 mW.

  • PDF

A 2.4 ㎓ Back-gate Tuned VCO with Digital/Analog Tuning Inputs (디지털/아날로그 입력을 통해 백게이트 튜닝을 이용한 2.4 ㎓ 전압 제어 발진기의 설계)

  • Oh, Beom-Seok;Hwang, Young-Seung;Chae, Yong-Doo;Lee, Dae-Hee;Jung, Wung
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.32-36
    • /
    • 2003
  • In this work, we have designed a fully integrated 2.4GHz LC-tuned voltage-controlled oscillator (VCO) with multiple tuning inputs for a 0.25-$\mu\textrm{m}$ standard CMOS process. The design of voltage-controlled oscillator is based on an LC-resonator with a spiral inductor of octagonal type and pMOS-varactors. Only two metal layer have been used in the designed inductor. The frequency tuning is achieved by using parallel pMOS transistors as varactors and back-gate tuned pMOS transistors in an active region. Coarse tuning is achieved by using 3-bit pMOS-varactors and fine tuning is performed by using back-gate tuned pMOS transistors in the active region. When 3-bit digital and analog inputs are applied to the designed circuits, voltage-controlled oscillator shows the tuning feature of frequency range between 2.3 GHz and 2.64 GHz. At the power supply voltage of 2.5 V, phase noise is -128dBc/Hz at 3MHz offset from the carrier. Total power dissipation is 7.5 mW.

  • PDF

A New Approach to Identify Optimal Properties of Shunting Circuits for Maximum Damping of Structural vibration using Piezoelectric Patches (파동전달 특성을 이용한 압전션트 감쇠의 새로운 최적화방법)

  • Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.465-468
    • /
    • 2004
  • The performance of the piezoelectric patches as vibration control elements depends on the shunting electronics which are designed to dissipate vibration energy through a resistive element. In this study, tuning of the shunting circuits is performed based on the wave propagation characteristics. Optimization of the electronic component is performed depending on the dynamic and geometric properties which include boundary conditions and position of the shunted piezoelectric patch relative to the structure. The developed tuning methods showed superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions.

  • PDF

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

Slow Wave Circuits for Traveling-Wave-Type Amplifiers (진행파형 증폭기를 위한 저속파회로)

  • 김봉열;황금찬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.2
    • /
    • pp.13-20
    • /
    • 1970
  • The dispersion characteristics of tape meander line were analyzed by electromagnetic field theory. The several different tape meander lines were photoetched on copper printed-bakelit substrate, and these tape meander line structures were inserted into the X-band waveguide. Phase bridge method was used for the dispersion characteristics measurement of meanderline. The measured. results were plotted on diagram(Brillouin diagram) and compared with theoretical values. Measured results were consistent with theoretical Values. But, on the measured diagram, passband midfrequency was lower than theoretical value. It was believed that the discrepancy was due to the backelite loading. The group velocity of stagger tuned meander line was higher than that of uniform meander live, and the freqnency band of constant group velocity of stagger tuned meanderline was sider than that of uniform meander line.

  • PDF

The Application of Fuzzy Set Theory into Precise Adjustment System

  • Ishimaru, Ichirou
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1155-1158
    • /
    • 1993
  • Proficiency in creating a knowledge base is required for high accuracy fuzzy control. To overcome this a fuzzy inference method is proposed that take these membership functions from the probability densities showing the distribution of the mesurement values. And a method using a rough fuzzy knowledge base automatically created from the basic measurement data and tuned using the gradient method is proposed. In actual tests, these were applied to automatic high accuracy adjustment devices for magnetic head and for high frequency circuits with good results.

  • PDF

A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter

  • Kim, Duksoo;Kim, Byungjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.164-168
    • /
    • 2016
  • A dual-band through-the-wall imaging radar receiver for a frequency-modulated continuous-wave radar system was designed and fabricated. The operating frequency bands of the receiver are S-band (2-4 GHz) and X-band (8-12 GHz). If the target is behind a wall, wall-reflected waves are rejected by a reconfigurable $G_m-C$ high-pass filter. The filter is designed using a high-order admittance synthesis method, and consists of transconductor circuits and capacitors. The cutoff frequency of the filter can be tuned by changing the reference current. The receiver system is fabricated on a printed circuit board using commercial devices. Measurements show 44.3 dB gain and 3.7 dB noise figure for the S-band input, and 58 dB gain and 3.02 dB noise figure for the X-band input. The cutoff frequency of the filter can be tuned from 0.7 MHz to 2.4 MHz.

Design of the Voltage-Controlled Sinusoidal Oscillator Using an OTA-C Simulated Inductor

  • Park, Ji-Mann;Chung, Won-Sup;Park, Young-Soo;Jun, Sung-Ik;Chung, Kyo-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.770-773
    • /
    • 2002
  • Two sinusoidal voltage-controlled oscillators using linear operational transconductance amplifiers are presented in this paper: One is based on the positive-feedback bandpass oscillator model and the other on the negative-feedback Colpitts model. The bandpass VCO consists of a noninverting amplifier and a current-controlled LC-tuned circuit which is realized by two linear OTA's and two grounded capacitors, while the Colpitts VCO consists of an inverting amplifier and a current-controlled LC-tuned circuit realized by three linear OTA's and three grounded capacitors. Prototype circuits have been built with discrete components. The experimental results have shown that the Colpitts VCO has a linearity error of less than 5 percent, a temperature coefficient of less than rm 100 ppm/$^{circ}C$, and a $pm1.5 Hz $frequency drift over an oscillation frequency range from 712Hz to 6.3kHz. A total harmonic distortion of 0.3 percent has been measured for a 3.3kHz oscillation and the corresponding peak-to-peak amplitude was 1V. The experimental results for bandpass VCO are also presented.

  • PDF

A Study on the Measurements, Moldeling, and Passive Filter Application of Neutral Hormonic Currents by Field Tests (현장시험에 의한 중성선 고조파 전류 측정, 모델링 및 수동필터 적용에 관한 연구)

  • 김경철;강윤모;이일무
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.103-111
    • /
    • 2003
  • With the proliferation of nonlinear loads such as personal computer in an educational building, high neutral harmonic currents have been observed. High neutral currents in three-phase four ire distribution power systems can cause tots of harmonic problems such as overloaded neutral conductors and malfunction of protective equipment. On-site measurements of harmonic currents and voltages were made and the corresponding equivalent circuits was developed. The circuit model under study was simulated numerically and graphically through the use of the software MATLAB. Simulation results verifying the effect of a single-tuned passive filter for the neutral harmonic current reduction are presented.

65 nm CMOS Base Band Filter for 77 GHz Automotive Radar Compensating Path Loss Difference (경로 손실 변화의 보상이 가능한 77 GHz 차량용 레이더 시스템을 위한 65 nm CMOS 베이스밴드 필터)

  • Kim, Young-Sik;Lee, Seung-Jun;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1151-1156
    • /
    • 2012
  • In this paper, the baseband filter is proposed in order to maintain a constant sensitivity regardless of distances for 77 GHz automotive radar system. Using existing DCOC loop circuit can remove DC offset and also cancel differences of received power depending on the distance. Measured results show that the maximum gain is 51 dB and high pass cutoff frequency can be tuned from 5 kHz to 15 kHz. The slope of high pass filter can be tuned from -10 to -40 dB/decade for the distance compensation. The measured NF and IIP3 are 26 dB and +4.5 dBm with 4.3 mA at 1.0 V supply voltage, respectively. The fabricated die size $500{\mu}m{\times}1,050{\mu}m$ excluding the in/out pads.