• Title/Summary/Keyword: Tunable Antenna

Search Result 36, Processing Time 0.022 seconds

Frequency Tunable and Miniaturized Zeroth-Order Resonant(ZOR) Antenna Design by Metamaterial (메타 물질을 이용하여 소형화와 주파수 가변이 가능한 영차 공진 안테나)

  • Jang, Young-Soo;Choi, Jae-Hyurk;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.900-904
    • /
    • 2010
  • In this paper, a frequency tunable zeroth-order resonant(ZOR) antenna has been implemented. The ZOR characteristics of the proposed antenna is realized by using a composite right-and left-handed(CRLH) transmission line which consists of a rectangular slot on the ground plane of a mushroom structured antenna in order to minimize the antenna size. In addition, the tunable devices are introduced on the slotted ground plane for frequency tuning capability. Depending on the on and off states of the tunable device on the slotted ground plane, a shunt inductance value of the CRLH transmission line is changed and its resonant frequency becomes tunable. From the experimental results, the resonant frequency of the proposed antenna is changed from 4.92 GHz to 2.96 GHz. Additionally, the proposed antenna's size is reduced by 94.24 % compared with the half-wavelength patch antenna.

Compact Metamaterial-Based Tunable Zeroth-Order Resonant Antenna with Chip Variable Capacitor

  • Jung, Youn-Kwon;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.189-191
    • /
    • 2013
  • This letter presents a compact metamaterial-based tunable zeroth-order resonant antenna. It is based on the double-negative unit cell with a function of tunable inductance realized by a varactor and impedance convertor in the shunt branch. The resonant frequency of the designed antenna ranges from 2.31 to 3.08 GHz, depending on the capacitance of the used varactor. Its size is very compact ($0.05{\lambda}_0{\times}0.2{\lambda}_0$) with a relatively wide tunable range of 29.1%. The impedance bandwidth of the antenna is from 20 to 50 MHz for the resonant center frequency. The measured maximum total realized gain is from -0.68 dBi (2.43 GHz) to 1.69 dBi (2.97 GHz). The EM-simulated and measured results are in good agreement.

Tunable Microstrip Antennas using Piezoelectric Substrates (압전기판을 이용한 마이크로스트립 안테나의 대역주파수 조정)

  • Cho, Ik-Hyun;Kim, Young-Hoon;Park, Young;Jeong, Kyu-Won;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.278-282
    • /
    • 2000
  • This paper investigated that resonant frequencies of microstrip patch antenna were tunable when piezoelectric materals were used as the antenna substrates. The resonant frequencies of the antenna using the piezoelectric substrate were able to be controlled by applied voltage. The frequency variation of the air gap antenna was 16MHz when the voltage variation was 13[KV/cm], and the frequency variation of microstrip patch antenna made of $LiNbO_3$ substrate was 11MHz when voltage variation was 480[V/cm].

  • PDF

Photonic True-Time Delay for Phased-Array Antenna System using Dispersion Compensating Module and a Multiwavelength Fiber Laser

  • Jeon, Hyun-Bin;Lee, Hojoon
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.406-413
    • /
    • 2014
  • An optical true-time delay beam-forming system using a tunable dispersion compensating module (DCM) for dense-wavelength division modulation (DWDM) and a multiwavelength fiber ring laser for a phased array antenna is proposed. The multiwavelength fiber ring laser has one output that includes four wavelengths; and four outputs that include only single-wavelength. The advantage of such a multiwavelength fiber ring laser is that it minimizes the number of devices in the phased array antenna system. The time delays according to wavelengths, which are assigned for each antenna element, are obtained from the tunable DCM. The tunable DCM based on a temperature adjustable Fabry-Perot etalon is used. As an experimental result, a DCM could be used to obtain the change of the beam angle by adjusting the dispersion value of the DCM at the fixed lasing wavelengths of the fiber ring laser in the proposed optical true-time delay.

Optically Driven Phased Array Antenna (광섬유를 이용한 위상 배열 안테나)

  • Kim, Tae-Sun;Seo, Chul-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.981-983
    • /
    • 1998
  • In this paper, we present theoretical designs for a beam steering phased array antenna that uses a true time delay optical feeder. A variable true time delay is achieved by employing one tunable laser source and high dispersion fibers with different length. The wavelength tunable optical carrier propagation in a high-dipersion fiber realizes a true time delay, with the steering direction set by a single voltage controlling the wavelength. Beamsteering of a phased array antenna is obtained by controlling the tunable laser source. An employment of a high dispersion fiber response shows wide-band operation of beem steering antenna system.

  • PDF

Tunable-Slot-Type Ground Radiation Antenna with Dual Band Operation Using LC Resonator

  • Zahid, Zeeshan;Kim, Hyeongdong
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2017
  • A dual-band tunable-slot-type ground radiation antenna is proposed. The feeding structure consists of a coplanar waveguide and a lumped capacitor to excite currents for first- and second-order resonant modes of the ground. The resonant frequencies of both bands are controlled using a series combination of a capacitor and an inductor. The proposed design may be an attractive choice for mobile devices owing to its compact geometry and tunable operating frequencies. The measurement and simulation results of the proposed antenna show good agreement, indicating good impedance matching and radiation performance.

Frequency properties of Microstrip Antenna using LiNbO$_3$ (마이크로스트립 안테나의 주파수 이동 특성에 관한 연구)

  • 오승재;우형관;하용만;김영훈;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.375-378
    • /
    • 2000
  • This paper investigated that resonant frequencies of microstrip patch antenna were tunable when piezoelectric materials were used as the antenna substrates. The resonant frequencies of the microstrip antenna using the piezoelectric substrate, like PZT, LiNbO$_3$ were able to be controlled by applied DC voltage. The frequency variation of the air gap antenna was 29MHz when the voltage variation was 14[kV/cm], and the frequency variation of microstrip patch antenna made of LiNbO$_3$substrate was 29MHz when voltage variation was 6[kV/cm].

  • PDF

A Triangular Microstrip Antenna with T-Shaped Slits for Tunable Dual-Band Applications (T자 모양 슬릿 구조를 이용한 이중 대역 공진 주파수 변환 삼각형 마이크로스트립 안테나)

  • Lee, Keon-Myung;Sung, Young-Je;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • A triangular microstrip antenna with T-shaped slits is proposed for tunable dual-band applications. The proposed antenna is designed using chip capacitors as a prototype. From this result the capacitor can be replaced to a varactor diode to control capacitance value. Since the input impedance of the antenna can be varied with the value of the chip capacitors on the T-shaped slits, the resonant frequency may be changed. The return losses are better than 10 dB at the lower band of $0.78{\sim}1.21$ GHz and 20 dB at the upper band of $1.97{\sim}2.17$ GHz, respectively. This antenna has the bandwidth of about 10 MHz and 50 MHz at each band. The peak gains of the antenna yield 0 dBi at the lower band and 3 dBi at the upper band, respectively. Details of the antenna design are described, and its performances are presented and analyzed.

Frequency properties of Air gap Antenna using PZT (PZT틀 이용한 Air gap 안테나의 주파수 특성에 관한 연구)

  • Kim, Young-Hoon;Woo, Hyoung-Gwan;Lim, Sung-Hyuck;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.164-167
    • /
    • 2000
  • This paper investigated that resonant frequencies of microstrip patch antenna were tunable when piezoelectric materals were used as the antenna substrates. The resonant frequencies of the air-gap antenna using the piezoelectric substrate were able to be controlled by applied AC voltage. The frequency variation of the antenn was great when PZT were applied voltage of the resonant frequency.

  • PDF

A study on microstrip antenna using PVDF (PVDF를 이용한 마이크로스트립 안테나에 관한 연구)

  • Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.224-225
    • /
    • 2005
  • The microstrip patch antenna with PVDF (poly vinylidene fluoride) substrate, were experimentally studied at frequency 6 GHz. During the design of the essential elements of microstrip antenna, EM simulation tool Ensemble V 7.0 is used. We observed the resonant frequency by DC appled electric field in a microstrip patch antenna. This research has been made as an electronically tunable microstrip antenna, taking advantage of the voltage control dielectric substrate and piezoelectric properties substrate. We discuss the effect of substrates, electric field and piezoelectric phenomena in the PVDF microstrip antenna. The antenna frequency can be changed by varying the applied dc voltage. In this paper, we propose, a new technique to agile frequency of the microstrip antenna by using the PVDF piezoelectric substrate.

  • PDF