• Title/Summary/Keyword: Tumor-specific T cells

Search Result 116, Processing Time 0.025 seconds

Induction of Potent Antigen-specific Cytotoxic T Cell Response by PLGA-nanoparticles Containing Antigen and TLR Agonist

  • Lee, Young-Ran;Lee, Young-Hee;Kim, Ki-Hyang;Im, Sun-A;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.30-33
    • /
    • 2013
  • Previously we showed that biodegradable nanoparticles containing poly-IC or CpG oligodeoxynucleotide (ODN) together with ovalbumin (OVA) were efficient at inducing MHC-restricted presentation of OVA peptides in dendritic cells. The CTL-inducing activities of the nanoparticles were examined in the present study. Nanoparticles containing poly-IC or CpG ODN together with OVA were prepared using biodegradable polymer poly(D,L-lactic acid-co-glycolic acid), and then were opsonized with mouse IgG. The nanoparticles were injected into the tail vein of mice, and 7 days later the OVA-specific CTL activities were measured using an in vivo CTL assay. Immunization of mice with the nanoparticles containing poly-IC or CpG ODN together with OVA elicited potent OVA-specific CTL activity compared to those containing OVA only. In accordance with these results, nanoparticles containing poly-IC or CpG ODN together with OVA exerted potent antitumor activity in mice that were subcutaneously implanted with EG7.OVA tumor cells. These results show that encapsulation of poly-IC or CpG ODN together with antigen in biodegradable nanoparticles is an effective approach for the induction of potent antigen-specific CTL responses in vivo.

The Effect of Mesenchymal Stem Cells on the Activation of Dendritic Cells in the Cell Culture Insert System (세포배양삽입체계(Cell Culture Insert System)에서 중간엽 줄기세포(Mesenchymal Stem Cell)가 수지상세포(Dendritic Cell)의 활성화에 미치는 영향)

  • Kim, Kee Won;Park, Suk Young;Lee, Kyung Bock;Kim, Hyun-su
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • Background: Bone marrow mesenchymal stem cells (MSC) inhibit the immune response of lymphocytes to specific antigens and dendritic cells (DC) are professional antigenpresenting cells whose function is to present antigen to naive T-lymphocytes with high efficiency and play a central role in the regulation of immune response. We studied the effects of MSC on DC to evaluate the relationship between MSC and DC in transplantation immunology. Methods: MSC were expanded from the bone marrow and DC were cultured from peripheral blood mononuclear cells (PBMNC) of 6 myelogenous leukemia after achieving complete response. Responder cells isolated from PBMNC and lysates of autologous leukemic cells are used as tumor antigen. The effect of MSC on the DC was analyzed by immunophenotype properties of DC and by proliferative capacity and the amount of cytokine production with activated PBMNC against the allogeneic lymphocytes. Also, cytotoxicity tests against leukemic cells studied to evaluate the immunologic effect of MSC on the DC. Results: MSC inhibit the CD83 and HLA-class II molecules of antigen-loaded DC. The proliferative capacity and the amount of INF-$\gamma$ production of lymphocytes to allogeneic lymphocytes were decreased in DC co-cultured with MSC. Also the cytotoxic activity of lymphocytes against leukemic cells was decreased in DC co-cultured with MSC. Conclusion: MSC inhibit the activation and immune response of DC induced by allogeneic or tumor antigen.

5-Aza-2'-deoxycytidine Inhibits the Maintenance of Cancer Stem Cell in a Mouse Model of Breast Cancer (마우스 유방암 모델에서 5-Aza-2'-deoxycytidine의 암줄기세포 유지 억제 효과)

  • Nho, Kyoung-Jin;Yang, In-Sook;Kim, Ran-Ju;Kim, Soo-Rim;Park, Jeong-Ran;Jung, Ji-Youn;Cho, Sung-Dae;Nam, Jeong-Seok
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1164-1169
    • /
    • 2009
  • Aberrant DNA methylation plays an important role in the development of cancer. It has been reported recently that DNA hypermethylation is involved in the maintenance of cancer stem cells. The present study was designed to test the hypothesis that the demethylating agent, 5-aza-2'-deoxycytidine (AZA), can inhibit the potential for maintenance of cancer stem cells. To validate this hypothesis, we used 4T1 syngeneic mouse models of breast cancer. The AZA pre-treated 4T1 cells showed a dramatic inhibition of tumorsphere formation, compared to their counterparts in vitro. In addition, the AZA treatment significantly suppressed the expression of stem regulator genes, such as oct-4, nanog and sox2, compared to counterparts in vivo. Therefore, selective inhibition of DNA methylation may be useful for stem-specific cancer therapy.

Deletion Timing of Cic Alleles during Hematopoiesis Determines the Degree of Peripheral CD4+ T Cell Activation and Proliferation

  • Guk-Yeol Park;Gil-Woo Lee;Soeun Kim;Hyebeen Hong;Jong Seok Park;Jae-Ho Cho;Yoontae Lee
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.43.1-43.11
    • /
    • 2020
  • Capicua (CIC) is a transcriptional repressor that regulates several developmental processes. CIC deficiency results in lymphoproliferative autoimmunity accompanied by expansion of CD44hiCD62Llo effector/memory and follicular Th cell populations. Deletion of Cic alleles in hematopoietic stem cells (Vav1-Cre-mediated knockout of Cic) causes more severe autoimmunity than that caused by the knockout of Cic in CD4+CD8+ double positive thymocytes (Cd4-Cre-mediated knockout of Cic). In this study, we compared splenic CD4+ T cell activation and proliferation between whole immune cell-specific Cic-null (Cicf/f;Vav1-Cre) and T cell-specific Cic-null (Cicf/f;Cd4-Cre) mice. Hyperactivation and hyperproliferation of CD4+ T cells were more apparent in Cicf/f;Vav1-Cre mice than in Cicf/f;Cd4-Cre mice. Cicf/f;Vav1-Cre CD4+ T cells more rapidly proliferated and secreted larger amounts of IL-2 upon TCR stimulation than did Cicf/f;Cd4-Cre CD4+ T cells, while the TCR stimulation-induced activation of the TCR signaling cascade and calcium flux were comparable between them. Mixed wild-type and Cicf/f;Vav1-Cre bone marrow chimeras also exhibited more apparent hyperactivation and hyperproliferation of Cic-deficient CD4+ T cells than did mixed wild-type and Cicf/f;Cd4-Cre bone marrow chimeras. Taken together, our data demonstrate that CIC deficiency at the beginning of T cell development endows peripheral CD4+ T cells with enhanced T cell activation and proliferative capability.

Effect of TLR4 and B7-H1 on Immune Escape of Urothelial Bladder Cancer and its Clinical Significance

  • Wang, Yong-Hua;Cao, Yan-Wei;Yang, Xue-Cheng;Niu, Hai-Tao;Sun, Li-Jiang;Wang, Xin-Sheng;Liu, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1321-1326
    • /
    • 2014
  • Background/Aim: Toll-like receptor 4 (TLR4) and B7-H1, both normally expressed restricted to immune cells, are found to be aberrantly expressed in a majority of human tumors and may play important roles in regulation of tumor immunity. It has been shown that urothelial bladder cancer (UBC) patients can manifest tumoral immune escape which may be a potential critical factor in tumor pathogenesis and progression. However, so far, the mechanisms of UBC-related immune escape have not been clarified. The aim of this study was to investigate the effect of TLR4 and B7-H1 on immune escape of UBC. Methods: Bladder cancer T24 cells were pre-incubated with LPS and co-cultured with tumor specific CTLs. CTL cytotoxicity and apoptosis rates were measured by MTT assay and flow cytometry, respectively. The effects of an ERK inhibitor on B7-H1 expression and CTL cytotoxicity against T24 cells were also evaluated. In addition, TLR4, B7-H1 and PD-1 protein expression was analyzed by immunohistochemistry in 60 UBC specimens and 10 normal urothelia. Results: TLR4 activation protected T24 cells from CTL killing via B7-H1 overexpression. However PD98059, an inhibitor of ERK, enhanced CTL killing of T24 cells by reducing B7-H1 expression. TLR4 expression was generally decreased in UBC specimens, while B7-H1 and PD-1 were greatly overexpressed. Moreover, expression of both B7-H1 and PD-1 was significantly associated with UICC stage and WHO grade classification. Conclusions: TLR4 and B7-H1 may contribute to immune escape of UBC. Targeting B7-H1 or the ERK pathway may offer new immunotherapy strategies for bladder cancer.

Interleukin-32 in Inflammatory Autoimmune Diseases

  • Kim, Soohyun
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine inducing crucial inflammatory cytokines such as tumor necrosis factor-${\alpha}(TNF{\alpha})$ and IL-6 and its expression is elevated in various inflammatory autoimmune diseases, certain cancers, as well as viral infections. IL-32 gene was first cloned from activated T cells, however IL-32 expression was also found in other immune cells and non-immune cells. IL-32 gene was identified in most mammals except rodents. It is transcribed as multiple-spliced variants in the absence of a specific activity of each isoform. IL-32 has been studied mostly in clinical fields such as infection, autoimmune, cancer, vascular disease, and pulmonary diseases. It is difficult to investigate the precise role of IL-32 in vivo due to the absence of IL-32 gene in mouse. The lack of mouse IL-32 gene restricts in vivo studies and restrains further development of IL-32 research in clinical applications although IL-32 new cytokine getting a spotlight as an immune regulatory molecule processing important roles in autoimmune, infection, and cancer. In this review, we discuss the regulation and function of IL-32 in inflammatory bowel diseases and rheumatoid arthritis.

HOCl Oxidation-modified CT26 Cell Vaccine Inhibits Colon Tumor Growth in a Mouse Model

  • Zhou, Rui;Huang, Wen-Jun;Ma, Cong;Zhou, Yan;Yao, Yu-Qin;Wang, Yu-Xi;Gou, Lan-Tu;Yi, Chen;Yang, Jin-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4037-4043
    • /
    • 2012
  • Despite progress in elucidating mechanisms associated with colorectal cancer and improvement of treatment methods, it remains a frequent cause of death worldwide. New and more effective therapies are therefore urgently needed. Recent studies have shown that immunogenicity of whole ovarian tumor cells and subsequent T cell response were potentiated by oxidation modification with hypochlorous acid (HOCl) in vitro and ex vivo. These results prompted us to investigate the protective antitumor response with an HOCl treated CT26 colorectal cancer cell vaccine in an in vivo mouse model. Administration of HOCl modified vaccine triggered robust antitumor immunity to autologous tumor cells in mice and prolonged survival period significantly. In addition, increased necrosis and apoptosis were found in tumor tissue from the oxidation group. Interestingly, ELISPOT assays showed that specific T cell responses were not elicited in response to the immunizing cellular antigen, in contrast to raising sera antibody titer and antibody binding activity shown by ELISA assay and flow cytometry. Further evaluation of the mechanisms underlying HOCl modified vaccine mediated humoral immunity highlighted the role of antibody-dependent cell-mediated cytotoxicity. These results combined with previous studies suggest that HOCl oxidation modified whole cell vaccine has wide applicability as a cancer vaccine because it can target both T cell- and B cell-specific responses. It may thus represent a promising approach for the immunotherapy of colorectal cancer.

miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin

  • Cao, Ke;Li, Jingjing;Zhao, Yong;Wang, Qi;Zeng, Qinghai;He, Siqi;Yu, Li;Zhou, Jianda;Cao, Peiguo
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.96-102
    • /
    • 2016
  • miR-101 is considered to play an important role in hepatocellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while downregulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment.

Development and Characterization of a Specific Anti-Caveolin-1 Antibody for Caveolin-1 Functional Study in Human, Goat and Mouse

  • Ke, Meng-Wei;Jiang, Yan-Nian;Li, Yi-Hung;Tseng, Ting-Yu;Kung, Ming-Shung;Huang, Chiun-Sheng;Cheng, Winston Teng-Kuei;Hsu, Jih-Tay;Ju, Yu-Ten
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.856-865
    • /
    • 2007
  • Caveolin-1 of the caveolin family of proteins regulates mammary gland development and has been shown to play a contradictory role in breast tumor progression. A specific anti-Caveolin-1 antibody will be useful for functional study of Caveolin-1 in different tissues. In this study, we generated a rabbit polyclonal antibody that specifically recognizes the N-terminal amino acids 50-65 of Caveolin-1. This polyclonal antibody specifically reacted with Caveolin-1 extracted from cells of different species, including human epithelial A431 cells, goat primary mammary epithelial cells and mice fibroblast NIH 3T3 cells, by Western blotting. Endogenous Caveolin-1 protein expressing in cells and normal human tissues was detected by this polyclonal antibody using immunocytofluorescent and immunohistochemical staining, respectively. Furthermore, an apparent decrease in Caveolin-1 expression in tumorous breast and colon tissues was detected by this polyclonal antibody. In conclusion, we have identified amino acids 50-65 of Caveolin-1, which contains an epitope that is specific to Caveolin-1 and is conserved in the human, goat and mouse. In future, this anti-Caveolin-1 antibody can be used to examine the progression of breast and colon cancers and to study functions of Caveolin-1 in human, goat and mouse cells.

Effective Response of the Peritoneum Microenvironment to Peritoneal and Systemic Metastasis from Colorectal Carcinoma

  • Yu, Min;Niu, Zhi-Min;Wei, Yu-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7289-7294
    • /
    • 2013
  • We here document discovery of a new and simple model of tumor seeding involving the mouse peritoneum. Irradiated tumor cells administered by i.p. injection provided effective vaccination against peritoneal carcinomatosis and distal metastasis with colorectal carcinomas. In flow cytometric analysis, CD4+ and CD8+ T lymphocytes, macrophages and myeloid-derived suppressor cells (MDSCs), which are easy to obtain in the peritoneal cavity, were revealed to have significant differences between immunized and non-immunized mice and these contributed to antitumor responses. We also observed that both serum and peritoneal lavage fluid harvested from immunized mice showed the presence of CT26-specific autoantibodies. In addition, increase in level of TGF-${\beta}1$ and IL-10 in serum but a decrease of TGF-${\beta}1$ in peritoneum was found. Taken together, these findings may provide a new vaccine strategy for the prevention of peritoneal and even systemic metastasis of carcinomas through induction of an autoimmune response in the peritoneum.