• Title/Summary/Keyword: Tumor suppressor gene

Search Result 303, Processing Time 0.032 seconds

Hypermethylation of TET1 Promoter Is a New Diagnosic Marker for Breast Cancer Metastasis

  • Sang, Yi;Cheng, Chun;Tang, Xiao-Feng;Zhang, Mei-Fang;Lv, Xiao-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1197-1200
    • /
    • 2015
  • Breast cancer metastasis is a major cause of cancer-related death in women. However, markers for diagnosis of breast cancer metastasis are rare. Here, we reported that TET1, a tumor suppressor gene, was downregulated and hypermethylated in highly metastatic breast cancer cell lines. Moreover, silencing of TET1 in breast cancer cells increased the migration and spreading of breast cancer cells. In breast cancer clinical samples, TET1 expression was reduced in LN metastases compared with primary tissues. Besides, the methylation level of the TET1 promoter was increased significantly in LN metastases. Taken together, these findings indicate that promoter hypermethylation may contribute to the downregulation of TET1 and could be used as a promising marker for diagnosis in patients with breast cancer metastasis.

2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells

  • Wong, Teck Yew;Menaga, Subramaniam;Huang, Chi-Ying F.;Ho, Siong Hock Anthony;Gan, Seng Chiew;Lim, Yang Mooi
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2022
  • 2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor κB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.

SET7-mediated TIP60 methylation is essential for DNA double-strand break repair

  • Song Hyun, Kim;Junyoung, Park;Jin Woo, Park;Ja Young, Hahm;Seobin, Yoon;In Jun, Hwang;Keun Pil, Kim;Sang-Beom, Seo
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.541-546
    • /
    • 2022
  • The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is crucial for maintaining genomic integrity and is involved in numerous fundamental biological processes. Post-translational modifications by proteins play an important role in regulating DNA repair. Here, we report that the methyltransferase SET7 regulates HR-mediated DSB repair by methylating TIP60, a histone acetyltransferase and tumor suppressor involved in gene expression and protein stability. We show that SET7 targets TIP60 for methylation at K137, which facilitates DSB repair by promoting HR and determines cell viability against DNA damage. Interestingly, TIP60 demethylation is catalyzed by LSD1, which affects HR efficiency. Taken together, our findings reveal the importance of TIP60 methylation status by SET7 and LSD1 in the DSB repair pathway.

Central giant-cell granuloma in a patient with neurofibromatosis type 1: 7 years of follow-up

  • Michelle Briner Garrido;Rohan Jagtap;Christopher D. Matesi;Vivian Diaz;John Hardeman;Anita Gohel
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.50 no.1
    • /
    • pp.49-55
    • /
    • 2024
  • Neurofibromatosis type 1 (NF1) is an autosomally dominant tumor suppressor syndrome and multisystem disease. Central giant-cell granulomas (CGCGs) can be seen in patients with NF1. A 21-year-old female was diagnosed with two CGCGs, one in the mandible and then one in the maxilla, in a 7-year period. Increased incidence of CGCGs in NF1 patients was thought to be caused by an underlying susceptibility to developing CGCG-like lesions in qualitatively abnormal bone, such as fibrous dysplasia. However, germline and somatic truncating second-hit mutations in the NF1 gene have been detected in NF1 patients with CGCGs, validating that they are NF1-associated lesions. Oral manifestations in patients with NF1 are very common. Knowledge of these manifestations and the genetic link between NF1 and CGCGs will enhance early detection and enable optimal patient care.

MicroRNA Expression Profiles in Korean Non-Small Cell Lung Cancer

  • Son, Ji Woong;Kim, Young Jin;Cho, Hyun Min;Lee, Soo Young;Jang, Jin Sung;Choi, Jin Eun;Lee, Jung Uee;Kang, Min Gyu;Lee, Yu Mi;Kwon, Sun Jung;Choi, Eugene;Na, Moon Jun;Park, Jae Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.5
    • /
    • pp.413-421
    • /
    • 2009
  • Background: MicroRNAs (miRNAs) play an important role in the regulation of cell proliferation, apoptosis, development and differentiation. Several studies have shown that aberrant expression of miRNAs is involved in cancer development and progression by regulating the expression of proto-oncogenes or tumor suppressor genes. In this study, we investigated miRNA expression profiles in Korean patients with non-small cell lung cancer (NSCLC). Methods: We performed miRNA microarray analysis containing 60~65 bp oligonucleotide probes representing human 318 miRNAs and validated the results of the microarray with Northern blot analysis or quantitative RT-PCR. Next, we examined the correlation between miRNA expression and the target gene transcriptional profile using a human whole-genome-expression microarray. Results: We showed that 35 miRNAs were expressed differentially in the NSCLCs and corresponding non-malignant lung tissues. We showed that 35 miRNAs were expressed differentially in the NSCLCs and corresponding nonmalignant lung tissues. Thirteen of the 35 differentially expressed miRNAs were newly identified in the present study. Of the 35 miRNAs, 2 (miR-371 and miR-210) were over-expressed in lung cancers, and 33 miRNAs, including miR-145, were under-expressed in lung cancers. miR-99b expression consistently showed a negative correlation with FGFR3 expression. Conclusion: Albeit a small number of patients were examined, these results suggest that miRNA expression profiles in Korean lung cancers may be somewhat different from the expression profiles reported on lung cancers in Western populations. The findings suggest that miR-99b might be a tumor suppressor through its up-regulation of FGFR3.

Induction of Tumor Suppressor Gene p53-dependent Apoptosis by Sanguinarine in HCT116 Human Colorectal Cancer Cells (결장암세포에서 sanguinarine에 의한 종양억제 유전자 p53 의존적 apoptosis 유도)

  • Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.400-409
    • /
    • 2021
  • Sanguinarine, a natural benzophenanthridine alkaloid, has been considered a potential therapeutic target for the treatment of cancer because it can induce apoptosis in human cancer cells; however, the underlying mechanisms of action still remain unclear. Tumor suppressor p53 deletion or mutation is an important reason for the resistance of colorectal cancer cells to anticancer agents. Therefore, in the present study, the role of p53 during apoptosis induced by sanguinarine was investigated in p53wild type (WT, p53+/+) and p53null (p53+/+) HCT116 colon carcinoma cells. Sanguinarine significantly caused greater reductions in cell viability in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells. Consistently, sanguinarine promoted more DNA damage and apoptosis in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells while increasing the expression of p53 and cyclin-dependent kinase inhibitor p21WAF1/CIP1. Sanguinarine increased the activity of caspase-8 and caspase-9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and it activated caspase-3, a typical effect caspase, in HCT116 (p53+/+) cells. Sanguinarine also increased the generation of reactive oxygen species (ROS), and the Bax/Bcl-2 ratio, while destroying the integrity of mitochondria in HCT116 (p53+/+) cells, but not in HCT116 (p53-/-) cells. Overall, the results indicate that sanguinarine induced p53-dependent apoptosis through ROS-mediated activation of extrinsic and intrinsic apoptotic pathways in HCT116 colorectal cancer cells.

Negative Regulation of Tumor Suppressor p53 at the Promoter Regions of Oncogenic SETDB1 and FosB Genes (암종양유전자 SETDB1과 FosB 발현에 대한 p53의 음성 조절기작)

  • Yun, Hyeon Ji;Na, Han-Heom;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1070-1077
    • /
    • 2020
  • Treatment with anticancer drugs changes the expression of multiple genes related to cell proliferation, migration, and drug resistance. These changes in gene expression may be connected to regulatory networks for each other. This study showed that doxorubicin treatment induces the expression of oncogenic FosB and decreases the expression of oncogenic SETDB1 in A549 and H1299 human lung cancer cells, which are different in tumor suppressor p53 status. However, a small difference was detected in the quantitative expression of those proteins in the two kinds of cells. To examine the potential regulation of SETDB1 and FosB by p53, we predicted putative p53 binding sites on the genomic DNA of SETDB1 and FosB using a TF motif binding search program. These putative p53 binding sites were identified as 18 sites in the promoter regions of SETDB1 and 21 sites in the genomic DNA of FosB. A luciferase assay confirmed that p53 negatively regulated the promoter activities of SETDB1 and FosB. Furthermore, the results of RT-PCR, western blot, qPCR, and immunostaining experiments indicated that the transfection of exogenous p53 decreases the expression of SETDB1 and FosB in H1299 cells. This indicates that p53 negatively regulates the expression of SETDB1 and FosB at the transcriptional level. Collectively, the downregulation of SETDB1 and FosB by p53 may provide functional networks for apoptosis and for the survival of cancer cells during anticancer drug treatment.

A Cyclin-Dependent Kinase Inhibitor, p16^{INK4A}, Induces Apoptosis in The Human Cancer Cells. (Cyclin-dependent Kinase저해 단백질 p16^{INK4A}의 인체 암세포에서의 세포사멸 유도 활성)

  • 김민경;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Previously, we synthesized a novel Cyclin-dependent kinase inhibitor, MCS-5A. Also, we investigated the involvement of cell cycle regulatory events during MCS-5A-mediated apoptosis in HL-60(+p16/-p53) cells with up-regulation of p16 protein expression. In contrast, apoptosis was not observed in A549(-p16/+p53) cells. Therefore we propose that $p16^{INK4A}$ is a key enzyme for inducing apoptosis. In the present studies, we have explored the mechanism of $p16^{INK4A}$ -mediated cytotoxicity and the role of p16.sup INK4A/ overexpression in the induction of apoptosis in human tumor cells. The tumor suppressor gene $p16^{INK4A}$ is known as a cyclin-dependent kinase inhibitor (CKI) and cell cycle regulator. We expressed wild type $p16^{INK4A}$ in pcDNA3.1 vector and then transfected into non-small cell lung cancer (NSCLC) cell expressing different statue of p16$^{INK4A}$, p53 gene〔A549(-p16/+p53), H1299(-p16/-p53) and HeLa(+pl6/+p53) cell line〕. TUNEL assay (including propidium iodide staining following transfection of these cell line with pcDNA3.1-pl6) indicate that p16$^{INK4A}$-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating an induction of caspase 3 cleavage due to the transfection of A549, H1299 and HeLa cells with pcDNA3.1-pl6. These results suggest that p16$^{INK4A}$ has a new function of inducing apoptosis which is not related with the function of tumor suppressor gene p53.

NDRG2 Controls COX-2/PGE2-Mediated Breast Cancer Cell Migration and Invasion

  • Kim, Myung-Jin;Kim, Hak-Su;Lee, Soo-Hwan;Yang, Young;Lee, Myeong-Sok;Lim, Jong-Seok
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.759-765
    • /
    • 2014
  • N-myc downstream-regulated gene 2 (NDRG2), which is known to have tumor suppressor functions, is frequently down-regulated in breast cancers and potentially involved in preventing the migration and invasion of malignant tumor cells. In the present study, we examined the inhibitory effects of NDRG2 overexpression, specifically focusing on the role of cyclooxygenase-2 (COX-2) in the migration of breast cancer cells. NDRG2 overexpression in MDA-MB-231 cells inhibited the expression of the COX-2 mRNA and protein, the transcriptional activity of COX-2, and prostaglandin $E_2$ ($PGE_2$) production, which were induced by a treatment with phorbol-12-myristate-13-acetate (PMA). Nuclear transcription factor-${\kappa}B$ (NF-${\kappa}B$) signaling attenuated by NDRG2 expression resulted in a decrease in PMA-induced COX-2 expression. Interestingly, the inhibition of COX-2 strongly suppressed PMA-stimulated migration and invasion in MDA-MB-231-NDRG2 cells. Moreover, siRNA-mediated knockdown of NDRG2 in MCF7 cells increased the COX-2 mRNA and protein expression levels and the PMA-induced COX-2 expression levels. Consistent with these results, the migration and invasion of MCF7 cells treated with NDRG2 siRNA were significantly enhanced following treatment with PMA. Taken together, our data show that the inhibition of NF-${\kappa}B$ signaling by NDRG2 expression is able to suppress cell migration and invasion through the down-regulation of COX-2 expression.

Decreases in $Casz1$ mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice

  • Ji, Su-Min;Shin, Young-Bin;Park, So-Yon;Lee, Hyeon-Ju;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.40-43
    • /
    • 2012
  • Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is $CASZ1$ confirmed in both Europeans and Asians. $CASZ1$ is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of $CASZ1$ in blood pressure, we decreased $Casz1$ mRNA levels in mice by siRNA. $Casz1$ siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing $Casz1$ mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in $Casz1$ mRNA levels in the kidney on multiple siRNA injections daily. Even though $Casz1$ siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of $in$ $vivo$ siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.