DOI QR코드

DOI QR Code

MicroRNA Expression Profiles in Korean Non-Small Cell Lung Cancer

  • Son, Ji Woong (Department of Internal Medicine, Konyang University Hospital) ;
  • Kim, Young Jin (Department of Thoracic Surgery, Konyang University Hospital) ;
  • Cho, Hyun Min (Department of Thoracic Surgery, Konyang University Hospital) ;
  • Lee, Soo Young (Myunggok Research Institute for Medical Science, Konyang University) ;
  • Jang, Jin Sung (Department of Biochemistry, Kyungpook National University School of Medicine) ;
  • Choi, Jin Eun (Department of Biochemistry, Kyungpook National University School of Medicine) ;
  • Lee, Jung Uee (Department of Hospital Pathology, Daejeon St. Mary's Hospital) ;
  • Kang, Min Gyu (Department of Internal Medicine, Konyang University Hospital) ;
  • Lee, Yu Mi (Department of Internal Medicine, Konyang University Hospital) ;
  • Kwon, Sun Jung (Department of Internal Medicine, Konyang University Hospital) ;
  • Choi, Eugene (Department of Internal Medicine, Konyang University Hospital) ;
  • Na, Moon Jun (Department of Internal Medicine, Konyang University Hospital) ;
  • Park, Jae Yong (Department of Biochemistry, Kyungpook National University School of Medicine)
  • Received : 2009.08.14
  • Accepted : 2009.09.18
  • Published : 2009.11.30

Abstract

Background: MicroRNAs (miRNAs) play an important role in the regulation of cell proliferation, apoptosis, development and differentiation. Several studies have shown that aberrant expression of miRNAs is involved in cancer development and progression by regulating the expression of proto-oncogenes or tumor suppressor genes. In this study, we investigated miRNA expression profiles in Korean patients with non-small cell lung cancer (NSCLC). Methods: We performed miRNA microarray analysis containing 60~65 bp oligonucleotide probes representing human 318 miRNAs and validated the results of the microarray with Northern blot analysis or quantitative RT-PCR. Next, we examined the correlation between miRNA expression and the target gene transcriptional profile using a human whole-genome-expression microarray. Results: We showed that 35 miRNAs were expressed differentially in the NSCLCs and corresponding non-malignant lung tissues. We showed that 35 miRNAs were expressed differentially in the NSCLCs and corresponding nonmalignant lung tissues. Thirteen of the 35 differentially expressed miRNAs were newly identified in the present study. Of the 35 miRNAs, 2 (miR-371 and miR-210) were over-expressed in lung cancers, and 33 miRNAs, including miR-145, were under-expressed in lung cancers. miR-99b expression consistently showed a negative correlation with FGFR3 expression. Conclusion: Albeit a small number of patients were examined, these results suggest that miRNA expression profiles in Korean lung cancers may be somewhat different from the expression profiles reported on lung cancers in Western populations. The findings suggest that miR-99b might be a tumor suppressor through its up-regulation of FGFR3.

Keywords

References

  1. Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5 https://doi.org/10.1038/nature02871
  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97 https://doi.org/10.1016/S0092-8674(04)00045-5
  3. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769-73 https://doi.org/10.1038/nature03315
  4. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37:766-70 https://doi.org/10.1038/ng1590
  5. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005;120:21-4 https://doi.org/10.1016/j.cell.2004.12.031
  6. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005;33:1290-7 https://doi.org/10.1093/nar/gki200
  7. Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. Trends Genet 2004;20:617-24 https://doi.org/10.1016/j.tig.2004.09.010
  8. Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science 2005;310: 1288-9 https://doi.org/10.1126/science.1121566
  9. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303:83-6 https://doi.org/10.1126/science.1091903
  10. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101: 2999-3004 https://doi.org/10.1073/pnas.0307323101
  11. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 2006;103:9136-41 https://doi.org/10.1073/pnas.0508889103
  12. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-69 https://doi.org/10.1038/nrc1840
  13. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66 https://doi.org/10.1038/nrc1997
  14. Gartel AL, Kandel ES. miRNAs: little known mediators of oncogenesis. Semin Cancer Biol 2008;18:103-10 https://doi.org/10.1016/j.semcancer.2008.01.008
  15. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9 https://doi.org/10.1073/pnas.242606799
  16. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64:3753-6 https://doi.org/10.1158/0008-5472.CAN-04-0637
  17. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635-47 https://doi.org/10.1016/j.cell.2005.01.014
  18. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33 https://doi.org/10.1038/nature03552
  19. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65: 9628-32 https://doi.org/10.1158/0008-5472.CAN-05-2352
  20. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003;1: 882-91
  21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8 https://doi.org/10.1038/nature03702
  22. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189-98 https://doi.org/10.1016/j.ccr.2006.01.025
  23. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008;13:48-57 https://doi.org/10.1016/j.ccr.2007.12.008
  24. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res 2007;67:6130-5 https://doi.org/10.1158/0008-5472.CAN-07-0533
  25. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007;67:8699-707 https://doi.org/10.1158/0008-5472.CAN-07-1936
  26. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257-61 https://doi.org/10.1073/pnas.0510565103
  27. Du YX, Cha Q, Chen XW, Chen YZ, Huang LF, Feng ZZ, et al. An epidemiological study of risk factors for lung cancer in Guangzhou, China. Lung Cancer 1996; 14 Suppl 1:S9-37
  28. Lee C, Kang KH, Koh Y, Chang J, Chung HS, Park SK, et al. Characteristics of lung cancer in Korea, 1997. Lung Cancer 2000;30:15-22 https://doi.org/10.1016/S0169-5002(00)00126-4
  29. Gazdar AF, Shigematsu H, Herz J, Minna JD. Mutations and addiction to EGFR: the Achilles 'heal' of lung cancers? Trends Mol Med 2004;10:481-6 https://doi.org/10.1016/j.molmed.2004.08.008
  30. Marchetti A, Martella C, Felicioni L, Barassi F, Salvatore S, Chella A, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 2005;23:857-65 https://doi.org/10.1200/JCO.2005.08.043
  31. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol 2004;2:e363 https://doi.org/10.1371/journal.pbio.0020363
  32. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115:787-98 https://doi.org/10.1016/S0092-8674(03)01018-3
  33. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet 2005;37:495-500 https://doi.org/10.1038/ng1536
  34. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002;21:4663-70 https://doi.org/10.1093/emboj/cdf476
  35. Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer 2007;46:336- 47 https://doi.org/10.1002/gcc.20415
  36. Bernard-Pierrot I, Brams A, Dunois-Larde C, Caillault A, Diez de Medina SG, Cappellen D, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 2006;27:740-7 https://doi.org/10.1093/carcin/bgi290
  37. Kang S, Dong S, Gu TL, Guo A, Cohen MS, Lonial S, et al. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell 2007;12:201-14 https://doi.org/10.1016/j.ccr.2007.08.003
  38. Marek L, Ware KE, Fritzsche A, Hercule P, Helton WR, Smith JE, et al. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol Pharmacol 2009;75:196-207 https://doi.org/10.1124/mol.108.049544

Cited by

  1. MicroRNA-23a: A Novel Serum Based Diagnostic Biomarker for Lung Adenocarcinoma vol.71, pp.1, 2009, https://doi.org/10.4046/trd.2011.71.1.8
  2. microRNA-99b acts as a tumor suppressor in non-small cell lung cancer by directly targeting fibroblast growth factor receptor 3 vol.3, pp.1, 2009, https://doi.org/10.3892/etm.2011.366
  3. Protein Signature of Lung Cancer Tissues vol.7, pp.4, 2009, https://doi.org/10.1371/journal.pone.0035157
  4. Meta‐analysis of microRNA expression in lung cancer vol.132, pp.12, 2009, https://doi.org/10.1002/ijc.27981
  5. Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299 vol.34, pp.5, 2009, https://doi.org/10.1007/s13277-013-0878-9
  6. Genetic variants in microRNAs and breast cancer risk in African American and European American women vol.141, pp.3, 2009, https://doi.org/10.1007/s10549-013-2698-4
  7. The Role of microRNAs in the Regulation of Apoptosis in Lung Cancer and Its Application in Cancer Treatment vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/318030
  8. miR-497 and miR-34a retard lung cancer growth by co-inhibiting cyclin E1 (CCNE1) vol.6, pp.15, 2015, https://doi.org/10.18632/oncotarget.3693
  9. 다발성골수종 환자의 파라핀포매조직에서 MicroRNA 발현 vol.47, pp.4, 2015, https://doi.org/10.15324/kjcls.2015.47.4.292
  10. 폐암에서 microRNA 155의 발현 양상과 임상병리학적 의의 vol.26, pp.9, 2016, https://doi.org/10.5352/jls.2016.26.9.1056
  11. Serum microRNA-376 family as diagnostic and prognostic markers in human gliomas vol.19, pp.2, 2009, https://doi.org/10.3233/cbm-160146
  12. Expression of MicroRNA-221 in Korean Patients with Multiple Myeloma vol.50, pp.2, 2009, https://doi.org/10.15324/kjcls.2018.50.2.197
  13. An Information Entropy-based Method to Detect microRNA Regulatory Module vol.12, pp.None, 2019, https://doi.org/10.2197/ipsjtbio.12.1
  14. MiR-144 Inhibits Tumor Growth and Metastasis in Osteosarcoma via Dual-suppressing RhoA/ROCK1 Signaling Pathway vol.95, pp.4, 2009, https://doi.org/10.1124/mol.118.114207