• Title/Summary/Keyword: Tumor necrosis factor $\alpha$

Search Result 1,712, Processing Time 0.022 seconds

Analysis of the Tumor Necrosis Factor-${\alpha}$ Promoter Polymorphism in Children with Henoch-Sch$\"{o}$nlein Purpura (Henoch-Sch$\"{o}$nlein 자반증에서 Tumor Necrosis Factor-${\alpha}$ 유전자 다형성 분석)

  • Yang, Hye-Ran;Ko, Jae-Sung;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2007
  • Purpose: Henoch-Sch$\"{o}$nlein purpura (HSP) is a systemic vasculitis involving the skin, joints, gastrointestinal tract, and kidney. Although the pathogenesis of HSP is still unclear, tumor necrosis factor (TNF-${\alpha}$) is regarded as an important cytokine contributing to the disease. The goal of this study was to determine the role of TNF-${\alpha}$ in the pathogenesis of HSP, and to evaluate the TNF-${\alpha}$ polymorphism for genetic susceptibility to HSP. Methods: From March 2004 to November 2005, 40 children with HSP and 32 healthy controls were included. Serum TNF-${\alpha}$ levels were measured using the ELISA method during the acute and convalescent phase of HSP. The genotypic and allelic frequencies of the TNF-${\alpha}$ gene polymorphisms at positions -308 and -238 were evaluated in patients and controls. Results: Serum TNF-${\alpha}$ levels were $23.17{\pm}11.31$ pg/mL in the acute phase of children with HSP and $10.56{\pm}5.59$ pg/mL in the convalescent phase (p=0.000). There was no significant correlation between the serum TNF-${\alpha}$ levels and the clinical scores of HSP (r=0.310, p=0.070). The genotypic frequency of the TNF-${\alpha}$ -308 polymorphism in children with HSP was not significantly different compared to healthy controls (GG 80%, GA 20% vs. GG 93.8%, GA 6.2%; p=0.094). The genotypic frequency of the TNF-${\alpha}$ -238 polymorphism in children with HSP was not significantly different (GG 97.5%, GA 2.5% vs. GG 93.8%, GA 6.3%; p=0.429). Conclusion: TNF-${\alpha}$ is assumed to be the main cytokine associated with the pathogenesis of HSP during the acute phase. However, the presence of TNF-${\alpha}$ gene polymorphisms at positions -308 and -238 did not distinguish children with HSP from normal controls.

  • PDF

Saxatilin, a Snake Venom Disintegrin, Suppresses TNF-α-induced Ovarian Cancer Cell Invasion

  • Kim, Dong-Seok;Jang, Yoon-Jung;Jeon, Ok-Hee;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.290-294
    • /
    • 2007
  • Saxatilin is a disintegrin known to inhibit tumor progression in vivo and in vitro. The role of saxatilin in cancer cell invasion was examined by a modified Boyden chamber assay in MDAH 2774 human ovarian cancer cell line. Saxatilin (50 nM) significantly inhibited cancer cell invasion induced by tumor necrosis factor-$\alpha$ (TNF-a$\alpha$). Saxatilin also reduced MMP-9 mRNA levels in cancer cells in a dosedependent manner. In addition, TNF-$\alpha$-induced MMP-9 activity was reduced by the treatment of saxatilin. These results indicate that transcriptional regulation of MMP-9 is an important mechanism for the tumor suppressive effects of saxatilin in MDAH 2774 human ovarian cancer cells.

Effect of TNF-$\alpha$ Gene Transfer to Respiratory Cancer Cell Lines on Sensitivity to Anticancer drugs (호흡기계암세포주에서 TNF-$\alpha$ 유전자의 이입이 항암제 감수성에 미치는 효과)

  • Mo, Eun-Kyung;Lee, Jae-Ho;Lee, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Choi, Hyung-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.302-313
    • /
    • 1995
  • Background: Tumor necrosis factor(TNF) showed antitumor cytolytic effects on sensitive tumor cells in numerous in vivo and in vitro studies. But it could not be administered systemically to human because of severe systemic adverse effects at effective concentrations against tumor cells. Many studies showed that a high concentrations of TNF in the local milieu may evoke in vivo TNF-responsive mechanisms sufficient to suppress tumor growth. Recently developed technique of TNF gene transfer to tumor cells using retrovirus vector could be a good candidate for local TNF administration. TNF is also known to synergistically enhance in vitro cytotoxicity of chemotherapeutic drugs targeted to DNA topoisomerase II against TNF-sensitive tumor cell lines. In this study the in vitro chemosensitivity against DNA topoisomerase II targeted chemotherapeutic drugs was evaluated using some respiratory cancer cell lines to which TNF gene had been transferred. Method: NCI-H2058, a human mesothelioma cell line, A549, a human lung adenocarcinoma cell line and WEHI 164 cell line, a murine fibrosarcoma cell line were treated with etoposide and doxorubicin, which are typical topoisomerase II - targeted chemotherapeutic agents, at different concentration. The resultant cytotoxicity was measured by MIT assay. Then the cytotoxicity of the same chemotherapeutic agents was measured after TNF-$\alpha$ gene-transfer and the two results were compared. Results: The cytotoxicity was not increased significantly in WEHI164 cell line and A549 cell line but statistically significant increase was observed in H2058 cell line when TNF-$\alpha$ gene was transferred(p<0.05). Conclusion: These findings show that TNF-$\alpha$ gene transfer to respiratory cancer cell lines results in variable effects on chemosensitivity against topoisomerase II inhibitor among different cell lines in vitro and can be additively cytotoxic in certain selective tumor cell lines.

  • PDF

Effect of Activated Protein C (APC) on Apoptosis of Cancer Cells (종양세포의 사멸에 있어서의 activated protein C의 효과)

  • Min, Kyoung-Jin;Bae, Jong-Sup;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.697-701
    • /
    • 2012
  • Activated protein C (APC) has an anticoagulant effect and a non-hemostatic effect such as regulation of cell metastasis and modulation of inflammation. In this study, we investigated whether APC could modulate apoptosis in cancer cells. Tumor necrosis factor (TNF)-${\alpha}$, cyclohexamide, and FAS markedly induced apoptosis in human renal carcinoma Caki cells. When Caki cells were pretreated with APC, the percentage of death receptor-induced apoptosis did not change. Furthermore, we checked the effect of APC on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioma T98G and human breast carcinoma MDA231 cells. APC also had no effect on TRAIL-induced apoptosis in both cell lines. However, pretreatment with APC inhibited combination treatment (kahweol plus TRAIL and kahweol plus melatonin)-induced apoptosis and PARP cleavage in Caki cells. Taken together, our results suggest that APC can modulate anti-cancer therapeutic efficiency.

Cilostazol Decreases Ethanol-Mediated TNFalpha Expression in RAW264.7 Murine Macrophage and in Liver from Binge Drinking Mice

  • Lee, Youn-Ju;Eun, Jong-Ryeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Alcoholic hepatitis is a leading cause of liver failure in which the increased production of tumor necrosis factor ${\alpha}$ (TNF${\alpha}$) plays a critical role in progression of alcoholic liver disease. In the present study, we investigated the effects of cilostazol, a selective inhibitor of type III phosphodiesterase on ethanol-mediated TNF${\alpha}$ production in vitro and $in$ $vivo$, and the effect of cilostazol was compared with that of pentoxifylline, which is currently used in clinical trial. RAW264.7 murine macrophages were pretreated with ethanol in the presence or absence of cilostazol then, stimulated with lipopolysacchride (LPS). Cilostazol significantly suppressed the level of LPS-stimulated TNF${\alpha}$ mRNA and protein with a similar degree to that by pentoxifylline. Cilostazol increased the basal AMP- activated protein kinase (AMPK) activity as well as normalized the decreased AMPK by LPS. AICAR, an AMPK activator and db-cAMP also significantly decreased TNF${\alpha}$ production in RAW264.7 cells, but cilostazol did not affect the levels of intracellular cAMP and reactive oxygen species (ROS) production. The $in$ $vivo$ effect of cilostazol was examined using ethanol binge drinking (6 g/kg) mice model. TNF${\alpha}$ mRNA and protein decreased in liver from ethanol gavaged mice compared to that from control mice. Pretreatment of mice with cilostazol or pentoxifylline further reduced the TNF${\alpha}$ production in liver. These results demonstrated that cilostazol effectively decrease the ethanol-mediated TNF${\alpha}$ production both in murine macrophage and in liver from binge drinking mice and AMPK may be responsible for the inhibition of TNF${\alpha}$ production by cilostazol.

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

Estrogen reinforces barrier formation and protects against tumor necrosis factor alpha-induced barrier dysfunction in oral epithelial cells

  • Choi, Yun Sik;Baek, Keumjin;Choi, Youngnim
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.5
    • /
    • pp.284-294
    • /
    • 2018
  • Purpose: Epithelial barrier dysfunction is involved in the pathophysiology of periodontitis and oral lichen planus. Estrogens have been shown to enhance the physical barrier function of intestinal and esophageal epithelia, and we aimed to investigate the effect of estradiol (E2) on the regulation of physical barrier and tight junction (TJ) proteins in human oral epithelial cell monolayers. Methods: HOK-16B cell monolayers cultured on transwells were treated with E2, an estrogen receptor (ER) antagonist (ICI 182,780), tumor necrosis factor alpha ($TNF{\alpha}$), or dexamethasone (Dexa), and the transepithelial electrical resistance (TER) was then measured. Cell proliferation was measured by the cell counting kit (CCK)-8 assay. The levels of TJ proteins and nuclear translocation of nuclear factor $(NF)-{\kappa}B$ were examined by confocal microscopy. Results: E2 treatment increased the TER and the levels of junctional adhesion molecule (JAM)-A and zonula occludens (ZO)-1 in a dose-dependent manner, without affecting cell proliferation during barrier formation. Treatment of the tight-junctioned cell monolayers with $TNF{\alpha}$ induced decreases in the TER and the levels of ZO-1 and nuclear translocation of $NF-{\kappa}B$. These $TNF{\alpha}-induced$ changes were inhibited by E2, and this effect was completely reversed by co-treatment with ICI 182,780. Furthermore, E2 and Dexa presented an additive effect on the epithelial barrier function. Conclusions: E2 reinforces the physical barrier of oral epithelial cells through the nuclear ER-dependent upregulation of TJ proteins. The protective effect of E2 on the $TNF{\alpha}-induced$ impairment of the epithelial barrier and its additive effect with Dexa suggest its potential use to treat oral inflammatory diseases involving epithelial barrier dysfunction.

Genipin Selectively Inhibits TNF-${\alpha}$-activated VCAM-1 But Not ICAM-1 Expression by Upregulation of PPAR-${\gamma}$ in Human Endothelial Cells

  • Jung, Seok-Hwa;Mun, Lidiya;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;Kwak, Jong-Hwan;Lee, Dong-Ung;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • Vascular inflammation process has been suggested to be an important risk factor in the development of atherosclerosis. Recently we reported that induction of peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) selectively inhibits vascular cell adhesion molecule-1 (VCAM-1) but not intercellular cell adhesion molecule-1 (ICAM-1) in tumor necrosis factor (TNF)-${\alpha}$-activated human umbilical vein endothelial cells (HUVEC). In this study, we investigated whether genipin inhibits expression of cellular adhesion molecules, which is relevant to inflammation. Pretreatment with genipin reduced reactive oxygen species (ROS) production and expression of VCAM-1, but not ICAM-1 in TNF-${\alpha}$-activated HUVEC. Genipin dose- and time-dependently increased PPAR-${\gamma}$ expression and inhibited TNF-${\alpha}$-induced phosphorylation of Akt and PKC with different degrees. Finally, genipin prevented TNF-${\alpha}$-induced adhesion of U937 monocytic cells to HUVEC. Taken together, these results indicate that upregualtion of PPAR-${\gamma}$ by genipin selectively inhibits TNF-${\alpha}$-induced expression of VCAM-1, in which regulation of Akt and/or PKC play a key role. We concluded that genipin can be used for the treatment of cardiovascular disorders such as atherosclerosis.

Altered Gene Expression of Inflammatory Cytokines in Adipose Tissue of Streptozotocin-induced Diabetic C57BL/6 Mice (Streptozotocin으로 당뇨가 유도된 C57BL/6 생쥐 지방조직에서의 염증성 사이토카인 유전자의 이상발현)

  • Lee, Yong-Ho;Kim, Jong Bong
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.825-831
    • /
    • 2013
  • The aim of this study was to investigate the effects of induced diabetes by streptozotocin (STZ) administration on gene expression of proinflammatory cytokines in adipose tissue of C57/BL6 mice fed either a normal diet (ND) or a high-fat diet (HFD). Four diabetic mice groups (16- or 26-week-old mice fed either ND or HFD) and four control groups of age and diet matched non-diabetic mice were used. By real-time PCR, gene expression levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and monocyte chemoattractant protein-1 (MCP-1) were examined in adipose tissue. The results demonstrated that gene expression of TNF-${\alpha}$ was significantly or marginally increased in STZ induced diabetic mice groups compared with non-diabetic groups. On the other hand, MCP-1 gene expression tended to be decreased in diabetic mice compared with non-diabetic controls. Especially, MCP-1 expression level in 16w diabetic mice on HFD was about 26% of that in age and diet matched non-diabetic controls (p<0.001). In addition, MCP-1 gene expression in adipose tissue was correlated with plasma insulin levels (p=0.0002). These results suggest that gene expression of proinflammatory cytokines in adipose tissue is differentially regulated in mouse models of diabetes. The basic data in this study will be useful for elucidating basic mechanisms of inflammatory state and increased expression of proinflammatory cytokines in adipose tissue in obesity, insulin resistance, and diabetes.

Tumor Necrosis Factor-α 238 G/A Polymorphism and Risk of Hepatocellular Carcinoma: Evidence from a Meta-analysis

  • Cheng, Ke;Zhao, Yu-Jun;Liu, Lian;Wan, Jing-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3275-3279
    • /
    • 2013
  • Background: Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) plays a very important role in the development and progression of cancer. Many epidemiological studies have evaluated associations between the TNF-${\alpha}$ 238 G/A polymorphism and hepatocellular carcinoma (HCC) risk, but the published data are inconclusive. Therefore, we performed the present meta-analysis. Methods: Electronic searches of several databases were conducted for all publications on the association between TNF-${\alpha}$ 238 G/A polymorphism and HCC through July 2012. Asummary odds ratio (OR) with its 95% confidence interval (CI) were calculated to evaluate the strength of this association. Results: Eleven case-control studies with a total of 1,572 HCC cases and 1,875 controls were finally included in this meta-analysis. Overall, the TNF-${\alpha}$ 238 G/A polymorphism was significantly associated with increased risk of hepatocellular carcinoma in three genetic comparison models (For A versus G: OR 1.32, 95%CI 1.04-1.69, P = 0.02, $I_2$ = 40%; for AG versus GG: OR 1.32, 95%CI 1.02-1.71, P = 0.03, $I_2$ = 40%; for AA/AG versus GG: OR 1.33, 95%CI 1.03-1.72, P = 0.03, $I_2$ = 41%) when all studies were pooled. Subgroup analysis by ethnicity further showed that there was a significant association between the TNF-${\alpha}$ 238 G/A polymorphism and risk of HCC in Asians under three genetic comparison models (For A versus G: OR 1.30, 95%CI 1.00-1.68, P = 0.05, $I_2$ = 45% for AA/AG versus GG: OR 1.31, 95%CI 1.00-1.71, P = 0.05, $I_2$ = 46%). Conclusions: This meta-analysis provided convincing evidence that the TNF-${\alpha}$ 238 G/A polymorphism is associated with increased susceptibility to HCC. However, more well-designed studies with large sample size are needed to validate this association in Caucasians.