DOI QR코드

DOI QR Code

Estrogen reinforces barrier formation and protects against tumor necrosis factor alpha-induced barrier dysfunction in oral epithelial cells

  • Choi, Yun Sik (Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Baek, Keumjin (Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Choi, Youngnim (Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry)
  • Received : 2018.07.11
  • Accepted : 2018.08.21
  • Published : 2018.10.30

Abstract

Purpose: Epithelial barrier dysfunction is involved in the pathophysiology of periodontitis and oral lichen planus. Estrogens have been shown to enhance the physical barrier function of intestinal and esophageal epithelia, and we aimed to investigate the effect of estradiol (E2) on the regulation of physical barrier and tight junction (TJ) proteins in human oral epithelial cell monolayers. Methods: HOK-16B cell monolayers cultured on transwells were treated with E2, an estrogen receptor (ER) antagonist (ICI 182,780), tumor necrosis factor alpha ($TNF{\alpha}$), or dexamethasone (Dexa), and the transepithelial electrical resistance (TER) was then measured. Cell proliferation was measured by the cell counting kit (CCK)-8 assay. The levels of TJ proteins and nuclear translocation of nuclear factor $(NF)-{\kappa}B$ were examined by confocal microscopy. Results: E2 treatment increased the TER and the levels of junctional adhesion molecule (JAM)-A and zonula occludens (ZO)-1 in a dose-dependent manner, without affecting cell proliferation during barrier formation. Treatment of the tight-junctioned cell monolayers with $TNF{\alpha}$ induced decreases in the TER and the levels of ZO-1 and nuclear translocation of $NF-{\kappa}B$. These $TNF{\alpha}-induced$ changes were inhibited by E2, and this effect was completely reversed by co-treatment with ICI 182,780. Furthermore, E2 and Dexa presented an additive effect on the epithelial barrier function. Conclusions: E2 reinforces the physical barrier of oral epithelial cells through the nuclear ER-dependent upregulation of TJ proteins. The protective effect of E2 on the $TNF{\alpha}-induced$ impairment of the epithelial barrier and its additive effect with Dexa suggest its potential use to treat oral inflammatory diseases involving epithelial barrier dysfunction.

Keywords

References

  1. Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 2010;177:512-24. https://doi.org/10.2353/ajpath.2010.100168
  2. Belibasakis GN, Kast JI, Thurnheer T, Akdis CA, Bostanci N. The expression of gingival epithelial junctions in response to subgingival biofilms. Virulence 2015;6:704-9. https://doi.org/10.1080/21505594.2015.1081731
  3. Brunner PM, Leung DY, Guttman-Yassky E. Immunologic, microbial, and epithelial interactions in atopic dermatitis. Ann Allergy Asthma Immunol 2018;120:34-41. https://doi.org/10.1016/j.anai.2017.09.055
  4. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009;9:799-809. https://doi.org/10.1038/nri2653
  5. Khalmuratova R, Park JW, Shin HW. Immune cell responses and mucosal barrier disruptions in chronic rhinosinusitis. Immune Netw 2017;17:60-7. https://doi.org/10.4110/in.2017.17.1.60
  6. Swindle EJ, Collins JE, Davies DE. Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches. J Allergy Clin Immunol 2009;124:23-34. https://doi.org/10.1016/j.jaci.2009.05.037
  7. Choi YS, Kim YC, Jo AR, Ji S, Koo KT, Ko Y, et al. P. gingivalis and dextran sulfate sodium induce periodontitis through the disruption of physical barriers in mice. Eur J Inflamm 2013;11:419-31. https://doi.org/10.1177/1721727X1301100212
  8. Choi YS, Kim Y, Yoon HJ, Baek KJ, Alam J, Park HK, et al. The presence of bacteria within tissue provides insights into the pathogenesis of oral lichen planus. Sci Rep 2016;6:29186. https://doi.org/10.1038/srep29186
  9. Katz J, Yang QB, Zhang P, Potempa J, Travis J, Michalek SM, et al. Hydrolysis of epithelial junctional proteins by P. gingivalis gingipains. Infect Immun 2002;70:2512-8. https://doi.org/10.1128/IAI.70.5.2512-2518.2002
  10. Ellen RP, Ko KS, Lo CM, Grove DA, Ishihara K. Insertional inactivation of the prtP gene of Treponema denticola confirms dentilisin's disruption of epithelial junctions. J Mol Microbiol Biotechnol 2000;2:518-6.
  11. Damek-Poprawa M, Korostoff J, Gill R, DiRienzo JM. Cell junction remodeling in gingival tissue exposed to a microbial toxin. J Dent Res 2013;92:518-23. https://doi.org/10.1177/0022034513486807
  12. Capaldo CT, Nusrat A. Cytokine regulation of tight junctions. Biochim Biophys Acta 2009;1788:864-71. https://doi.org/10.1016/j.bbamem.2008.08.027
  13. Takano K, Kojima T, Sawada N, Himi T. Role of tight junctions in signal transduction: an update. EXCLI J 2014;13:1145-62.
  14. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 2013;19:197-209. https://doi.org/10.1016/j.molmed.2012.12.007
  15. Looijer-van Langen M, Hotte N, Dieleman LA, Albert E, Mulder C, Madsen KL. Estrogen receptor-${\beta}$ signaling modulates epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2011;300:G621-6. https://doi.org/10.1152/ajpgi.00274.2010
  16. Braniste V, Leveque M, Buisson-Brenac C, Bueno L, Fioramonti J, Houdeau E. Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol 2009;587:3317-28. https://doi.org/10.1113/jphysiol.2009.169300
  17. Honda J, Iijima K, Asanuma K, Ara N, Shiroki T, Kondo Y, et al. Estrogen enhances esophageal barrier function by potentiating occludin expression. Dig Dis Sci 2016;61:1028-38. https://doi.org/10.1007/s10620-015-3980-6
  18. Valimaa H, Savolainen S, Soukka T, Silvoniemi P, Makela S, Kujari H, et al. Estrogen receptor-beta is the predominant estrogen receptor subtype in human oral epithelium and salivary glands. J Endocrinol 2004;180:55-62. https://doi.org/10.1677/joe.0.1800055
  19. Park NH, Min BM, Li SL, Huang MZ, Cherick HM, Doniger J. Immortalization of normal human oral keratinocytes with type 16 human papillomavirus. Carcinogenesis 1991;12:1627-31. https://doi.org/10.1093/carcin/12.9.1627
  20. Fujita T, Yumoto H, Shiba H, Ouhara K, Miyagawa T, Nagahara T, et al. Irsogladine maleate regulates epithelial barrier function in tumor necrosis factor-${\alpha}$-stimulated human gingival epithelial cells. J Periodontal Res 2012;47:55-61. https://doi.org/10.1111/j.1600-0765.2011.01404.x
  21. Kielgast F, Schmidt H, Braubach P, Winkelmann VE, Thompson KE, Frick M, et al. Glucocorticoids regulate tight junction permeability of lung epithelia by modulating claudin 8. Am J Respir Cell Mol Biol 2016;54:707-17. https://doi.org/10.1165/rcmb.2015-0071OC
  22. Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 2006;290:G496-504. https://doi.org/10.1152/ajpgi.00318.2005
  23. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 2004;286:G367-76. https://doi.org/10.1152/ajpgi.00173.2003
  24. Ma TY, Boivin MA, Ye D, Pedram A, Said HM. Mechanism of $TNF-{\alpha}$ modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 2005;288:G422-30. https://doi.org/10.1152/ajpgi.00412.2004
  25. Sun WH, Keller ET, Stebler BS, Ershler WB. Estrogen inhibits phorbol ester-induced I kappa B alpha transcription and protein degradation. Biochem Biophys Res Commun 1998;244:691-5. https://doi.org/10.1006/bbrc.1998.8324
  26. Wen Y, Yang S, Liu R, Perez E, Yi KD, Koulen P, et al. Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia. Brain Res 2004;1008:147-54. https://doi.org/10.1016/j.brainres.2004.02.019
  27. Hsu SM, Chen YC, Jiang MC. 17 beta-estradiol inhibits tumor necrosis factor-alpha-induced nuclear factor-kappa B activation by increasing nuclear factor-kappa B p105 level in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2000;279:47-52. https://doi.org/10.1006/bbrc.2000.3891
  28. Quaedackers ME, van den Brink CE, van der Saag PT, Tertoolen LG. Direct interaction between estrogen receptor alpha and NF-kappaB in the nucleus of living cells. Mol Cell Endocrinol 2007;273:42-50. https://doi.org/10.1016/j.mce.2007.05.002
  29. Pelzer T, Neumann M, de Jager T, Jazbutyte V, Neyses L. Estrogen effects in the myocardium: inhibition of NF-kappaB DNA binding by estrogen receptor-alpha and -beta. Biochem Biophys Res Commun 2001;286:1153-7. https://doi.org/10.1006/bbrc.2001.5519
  30. Kalaitzidis D, Gilmore TD. Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 2005;16:46-52. https://doi.org/10.1016/j.tem.2005.01.004
  31. Ghisletti S, Meda C, Maggi A, Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 2005;25:2957-68. https://doi.org/10.1128/MCB.25.8.2957-2968.2005
  32. Schaefer TM, Wright JA, Pioli PA, Wira CR. IL-1beta-mediated proinflammatory responses are inhibited by estradiol via down-regulation of IL-1 receptor type I in uterine epithelial cells. J Immunol 2005;175:6509-16. https://doi.org/10.4049/jimmunol.175.10.6509
  33. Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C, et al. Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci U S A 2003;100:9614-9. https://doi.org/10.1073/pnas.1531957100
  34. Miyagawa T, Fujita T, Yumoto H, Yoshimoto T, Kajiya M, Ouhara K, et al. Azithromycin recovers reductions in barrier function in human gingival epithelial cells stimulated with tumor necrosis $factor-{\alpha}$. Arch Oral Biol 2016;62:64-9. https://doi.org/10.1016/j.archoralbio.2015.11.015
  35. Tsai PW, Cheng YL, Hsieh WP, Lan CY. Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol 2014;52:581-9. https://doi.org/10.1007/s12275-014-3630-2
  36. Kulkarni NN, Gunnarsson HI, Yi Z, Gudmundsdottir S, Sigurjonsson OE, Agerberth B, et al. Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line. Immunobiology 2016;221:245-52. https://doi.org/10.1016/j.imbio.2015.09.001
  37. Park K, Kim YI, Shin KO, Seo HS, Kim JY, Mann T, et al. The dietary ingredient, genistein, stimulates cathelicidin antimicrobial peptide expression through a novel S1P-dependent mechanism. J Nutr Biochem 2014;25:734-40. https://doi.org/10.1016/j.jnutbio.2014.03.005

Cited by

  1. Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α vol.49, pp.5, 2018, https://doi.org/10.5051/jpis.2019.49.5.270
  2. JAM-A functions as a female microglial tumor suppressor in glioblastoma vol.22, pp.11, 2020, https://doi.org/10.1093/neuonc/noaa148
  3. Equol testing and supplementation for patients with desquamative gingivitis vol.62, pp.4, 2018, https://doi.org/10.2329/perio.62.200