• Title/Summary/Keyword: Tumor microenvironment

Search Result 158, Processing Time 0.024 seconds

Single-cell RNA-Seq unveils tumor microenvironment

  • Lee, Hae-Ock;Park, Woong-Yang
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.283-284
    • /
    • 2017
  • Single cell transcriptome analysis is a powerful tool for defining cell types or sub-populations within a heterogeneous bulk population. Tumor-associated microenvironment is a complex ecosystem consisting of numerous cell types that support tumor growth, angiogenesis, immune evasion, and metastasis. With the success of checkpoint inhibitors targeting the immune cell compartment, tumor microenvironment is emerging as a potential anti-cancer target, and understanding it has become an imminent subject in cancer biology.

Perspectives on immune checkpoint ligands: expression, regulation, and clinical implications

  • Moon, Jihyun;Oh, Yoo Min;Ha, Sang-Jun
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.403-412
    • /
    • 2021
  • In the tumor microenvironment, immune checkpoint ligands (ICLs) must be expressed in order to trigger the inhibitory signal via immune checkpoint receptors (ICRs). Although ICL expression frequently occurs in a manner intrinsic to tumor cells, extrinsic factors derived from the tumor microenvironment can fine-tune ICL expression by tumor cells or prompt non-tumor cells, including immune cells. Considering the extensive interaction between T cells and other immune cells within the tumor microenvironment, ICL expression on immune cells can be as significant as that of ICLs on tumor cells in promoting antitumor immune responses. Here, we introduce various regulators known to induce or suppress ICL expression in either tumor cells or immune cells, and concise mechanisms relevant to their induction. Finally, we focus on the clinical significance of understanding the mechanisms of ICLs for an optimized immunotherapy for individual cancer patients.

TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma

  • Lee, Eun-Young;Kim, Minjeong;Choi, Beom K.;Kim, Dae Hong;Choi, Inho;You, Hye Jin
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.784-794
    • /
    • 2021
  • Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.

A Synthetic Analog of Resveratrol Inhibits the Proangiogenic Response of Liver Sinusoidal Cells during Hepatic Metastasis

  • Olaso, Elvira;Benedicto, Aitor;Lopategi, Aritz;Cossio, Fernando P.;Arteta, Beatriz
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.162-169
    • /
    • 2022
  • We utilized Fas21, a resveratrol analog, to modulate the function of hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the angiogenic phase of murine liver metastasis by B16 melanoma and 51b colorectal carcinoma. Preangiogenic micrometastases were treated with Fas21 (1 mg/kg/day) or vehicle during the development of intra-angiogenic tracts. Mice treated with Fas21 showed reduced liver tumor foci in both liver metastasis models. Micrometastases were classified immunohistochemically, as well as according to their position coordinates and connection to local microvasculature. The volume of liver occupied by sinusoidal-type foci, containing infiltrating angiogenic capillaries, decreased by ~50% in Fas21-treated mice compared to vehicle-treated ones in both tumor metastasis models. The volume of portal foci, containing peripheral neoangiogenesis within a discontinuous layer of myofibroblasts, was similar in all experimental groups in both tumor metastasis models, but displayed enhanced necrotic central areas devoid of angiogenesis following Fas21 treatment. As a result, sinusoidal tumors from mice treated with Fas21 showed a 50% reduction in desmin(+)/asma(+) HSCs and CD31(+) vessel density, and a 45% reduction in intrametastatic VEGF mRNA compared with sinusoidal tumors from vehicle-treated mice. Necrotic portal metastases increased 2-4-fold in treated mice. In vitro, Fas21 reduced VEGF secretion by HSCs and 51b cells dose-dependently. Additionally, HSCs migration in response to tumor soluble factors was dose-dependently diminished by Fas21, as was LSEC migration in response to HSCs and tumor soluble factors. Resveratrol analog Fas21 inhibits the proangiogenic response of HSCs and LSECs during the development of murine liver metastasis.

Emerging role of RUNX3 in the regulation of tumor microenvironment

  • Manandhar, Sarala;Lee, You Mie
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.174-181
    • /
    • 2018
  • A number of genes have been therapeutically targeted to relieve cancer, but cancer relapse is still a growing issue. The concept that the surrounding tumor environment is critical for the progression of cancer may foster an answer to the issue of cancer malignancy. Runt domain transcription factors (RUNX1, 2, and 3) are evolutionarily conserved and have been intensively studied for their roles in normal development and pathological conditions. During tumor growth, a hypoxic microenvironment and infiltration of the tumor by immune cells are common phenomena. In this review, we briefly introduce the consequences of hypoxia and immune cell infiltration into the tumor microenvironment with a focus on RUNX3 as a critical regulator. Furthermore, based on our current knowledge of the functional role of RUNX3 in hypoxia and immune cell maintenance, a probable therapeutic intervention is suggested for the effective management of tumor growth and malignancy.

An engineered PD-1-based and MMP-2/9-oriented fusion protein exerts potent antitumor effects against melanoma

  • Wei, Mulan;Liu, Xujie;Cao, Chunyu;Yang, Jianlin;Lv, Yafeng;Huang, Jiaojiao;Wang, Yanlin;Qin, Ye
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.572-577
    • /
    • 2018
  • Recent studies showed that the PD-1/PD-L1 checkpoint blockade is a dramatic therapy for melanoma by enhancing antitumor immune activity. Currently, major strategies for the PD-1/PD-L1 blockade have mainly focused on the use of antibodies and compounds. Seeking an alternative approach, others employ endogenous proteins as blocking agents. The extracellular domain of PD-1 (ePD1) includes the binding site with PD-L1. Accordingly, we constructed a PD-1-based recombinantly tailored fusion protein (dFv-ePD1) that consists of bivalent variable fragments (dFv) of an MMP-2/9-targeted antibody and ePD1. The melanoma-binding intensity and antitumor activity were also investigated. We found the intense and selective binding capability of the protein dFv-ePD1 to human melanoma specimens was confirmed by a tissue microarray. In addition, dFv-ePD1 significantly suppressed the migration and invasion of mouse melanoma B16-F1 cells, and displayed cytotoxicity to cancer cells in vitro. Notably, dFv-ePD1 significantly inhibited the growth of mouse melanoma B16-F1 tumor cells in mice and in vivo fluorescence imaging showed that dFv-ePD was gradually accumulated into the B16-F1 tumor. Also the B16-F1 tumor fluorescence intensity at the tumor site was stronger than that of dFv. This study indicates that the recombinant protein dFv-ePD1 has an intensive melanoma-binding capability and exerts potent therapeutic efficacy against melanoma. The novel format of the PD-L1-blocked agent may play an active role in antitumor immunotherapy.

Radiation-Induced CXCL12 Upregulation via Histone Modification at the Promoter in the Tumor Microenvironment of Hepatocellular Carcinoma

  • Ahn, Hak Jun;Hwang, Soon Young;Nguyen, Ngoc Hoan;Lee, Ik Jae;Lee, Eun Jeong;Seong, Jinsil;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.530-545
    • /
    • 2019
  • Tumor cells can vary epigenetically during ionizing irradiation (IR) treatment. These epigenetic variegations can influence IR response and shape tumor aggressiveness. However, epigenetic disturbance of histones after IR, implicating in IR responsiveness, has been elusive. Here, we investigate whether altered histone modification after IR can influence radiation responsiveness. The oncogenic CXCL12 mRNA and protein were more highly expressed in residual cancer cells from a hepatoma heterotopic murine tumor microenvironment and coculture of human hepatoma Huh7 and normal IMR90 cells after radiation. H3K4 methylation was also enriched and H3K9 methylation was decreased at its promoter region. Accordingly, invasiveness and the subpopulation of aggressive $CD133^+/CD24^-$ cells increased after IR. Histone demethylase inhibitor IOX1 attenuated CXCL12 expression and the malignant subpopulation, suggesting that responses to IR can be partially mediated via histone modifications. Taken together, radiation-induced histone alterations at the CXCL12 promoter in hepatoma cells are linked to CXCL12 upregulation and increased aggressiveness in the tumor microenvironment.

Highlighted STAT3 as a potential drug target for cancer therapy

  • Lee, Haeri;Jeong, Ae Jin;Ye, Sang-Kyu
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.415-423
    • /
    • 2019
  • Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.

Role of Tumor-associated Macrophage in Tumor Microenvironment (암미세환경에서 종양관련대식세포의 역할)

  • Min, Do Sik
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.992-998
    • /
    • 2018
  • Cancer cells grow in an environment composed of various components that supports tumor growth. Major cell types in the tumor microenvironment are fibroblast, endothelial cells and immune cells. All of these cells communicate with cancer cells. Among infiltrating immune cells as an abundant component of solid tumors, macrophages are a major component of the tumor microenvironment and orchestrates various aspects of immunity. The complex balance between pro-tumoral and anti-tumoral effects of immune cell infiltration can create a chronic inflammatory microenvironment essential for tumor growth and progression. Macrophages express different functional programs in response to microenvironmental signals, defined as M1 and M2 polarization. Tumor-associated macrophages (TAM) secret many cytokines, chemokines and proteases, which also promote tumor angiogenesis, growth, metastasis and immunosuppression. TAM have multifaceted roles in the development of many tumor types. TAM also interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. TAM obtain various immunosuppressive functions to maintain the tumor microenvironment. TAM are characterized by their heterogeneity and plasticity, as they can be functionally reprogrammed to polarized phenotypes by exposure to cancer-related factors, stromal factors, infections, or even drug interventions. Because TAMs produce tumor-specific chemokines by the stimulation of stromal factors, chemokines might serve as biomarkers that reflect disease activity. The evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of TAM in tumors is considered a promising therapeutic strategy for anti-cancer treatment.

Transglutaminase 2 Promotes Autophagy by LC3 Induction through p53 Depletion in Cancer Cell

  • Kang, Joon Hee;Lee, Seon-Hyeong;Cheong, Heesun;Lee, Chang Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2019
  • Transglutaminase 2 (TGase 2) plays a key role in p53 regulation, depleting p53 tumor suppressor through autophagy in renal cell carcinoma. We found that microtubule-associated protein 1A/1B-light chain 3 (LC3), a hallmark of autophagy, were tightly associated with the level of TGase 2 in cancer cells. TGase 2 overexpression increased LC3 levels, and TGase 2 knockdown decreased LC3 levels in cancer cells. Transcript abundance of LC3 was inversely correlated with level of wild type p53. TGase 2 knockdown using siRNA, or TGase 2 inhibition using GK921 significantly reduced autophagy through reduction of LC3 transcription, which was followed by restoration of p53 levels in cancer cells. TGase 2 overexpression promoted the autophagy process by LC3 induction, which was correlated with p53 depletion in cancer cells. Rapamycin-resistant cancer cells also showed higher expression of LC3 compared to the rapamycin-sensitive cancer cells, which was tightly correlated with TGase 2 levels. TGase 2 knockdown or TGase 2 inhibition sensitized rapamycin-resistant cancer cells to drug treatment. In summary, TGase 2 induces drug resistance by potentiating autophagy through LC3 induction via p53 regulation in cancer.