Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2017R1A5A1014560, 2019M3A9B6065221) and by the National Institute of Biological Resources funded by the Ministry of Environment (MOE) (NIBR202122202). This study was also supported by the Korean Health Technology R&D Project (HV20C0144) through the Korean Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
- Patsoukis N, Wang Q, Strauss L and Boussiotis VA (2020) Revisiting the PD-1 pathway. Sci Adv 6, eabd2712 https://doi.org/10.1126/sciadv.abd2712
- Marin-Acevedo JA, Kimbrough EO and Lou Y (2021) Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol 14, 45 https://doi.org/10.1186/s13045-021-01056-8
- Anderson AC, Joller N and Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989-1004 https://doi.org/10.1016/j.immuni.2016.05.001
- Chihara N, Madi A, Kondo T et al (2018) Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 558, 454-459 https://doi.org/10.1038/s41586-018-0206-z
- Yadollahi P, Jeon YK, Ng WL and Choi I (2021) Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity. BMB Rep 54, 12-20 https://doi.org/10.5483/BMBRep.2021.54.1.241
- Yu Y, Liang Y, Li D et al (2021) Glucose metabolism involved in PD-L1-mediated immune escape in the malignant kidney tumour microenvironment. Cell Death Discov 7, 15
- Byun JK, Park M, Lee S et al (2020) Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol Cell 80, 592-606 e598 https://doi.org/10.1016/j.molcel.2020.10.015
- Feng J, Yang H, Zhang Y et al (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36, 5829-5839 https://doi.org/10.1038/onc.2017.188
- Barsoum IB, Smallwood CA, Siemens DR and Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74, 665-674 https://doi.org/10.1158/0008-5472.CAN-13-0992
- Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8, 793-800 https://doi.org/10.1038/nm730
- Garcia-Diaz A, Shin DS, Moreno BH et al (2017) interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19, 1189-1201 https://doi.org/10.1016/j.celrep.2017.04.031
- Lim SO, Li CW, Xia W et al (2016) Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925-939 https://doi.org/10.1016/j.ccell.2016.10.010
- Wang X, Yang L, Huang F et al (2017) Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184, 7-14 https://doi.org/10.1016/j.imlet.2017.02.006
- Quandt D, Jasinski-Bergner S, Muller U, Schulze B and Seliger B (2014) Synergistic effects of IL-4 and TNFalpha on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 12, 151 https://doi.org/10.1186/1479-5876-12-151
- Xu L, Chen X, Shen M et al (2018) Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels. Mol Oncol 12, 269-286 https://doi.org/10.1002/1878-0261.12135
- Shen MJ, Xu LJ, Yang L et al (2017) Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget 8, 80506-80520 https://doi.org/10.18632/oncotarget.19193
- Chan LC, Li CW, Xia W et al (2019) IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J Clin Invest 129, 3324-3338 https://doi.org/10.1172/JCI126022
- Carbotti G, Barisione G, Airoldi I et al (2015) IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 6, 43267-43280 https://doi.org/10.18632/oncotarget.6530
- David JM, Dominguez C, McCampbell KK, Gulley JL, Schlom J and Palena C (2017) A novel bifunctional anti-PD-L1/TGF-beta Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology 6, e1349589 https://doi.org/10.1080/2162402X.2017.1349589
- Qian Y, Deng J, Geng L et al (2008) TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest 26, 816-821 https://doi.org/10.1080/07357900801941852
- Boes M and Meyer-Wentrup F (2015) TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells. Cancer Lett 361, 49-56 https://doi.org/10.1016/j.canlet.2015.02.027
- Yamashita K, Iwatsuki M, Harada K et al (2020) Prognostic impacts of the combined positive score and the tumor proportion score for programmed death ligand-1 expression by double immunohistochemical staining in patients with advanced gastric cancer. Gastric Cancer 23, 95-104 https://doi.org/10.1007/s10120-019-00999-9
- Shklovskaya E and Rizos H (2020) Spatial and temporal changes in pd-l1 expression in cancer: the role of genetic drivers, tumor microenvironment and resistance to therapy. Int J Mol Sci 21, 7139 https://doi.org/10.3390/ijms21197139
- Brown JA, Dorfman DM, Ma FR et al (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170, 1257-1266 https://doi.org/10.4049/jimmunol.170.3.1257
- Muthumani K, Shedlock DJ, Choo DK et al (2011) HIV-mediated phosphatidylinositol 3-kinase/serine-threonine kinase activation in APCs leads to programmed death-1 ligand upregulation and suppression of HIV-specific CD8 T cells. J Immunol 187, 2932-2943 https://doi.org/10.4049/jimmunol.1100594
- Kryczek I, Wei S, Gong W et al (2008) Cutting edge: IFN-gamma enables APC to promote memory Th17 and abate Th1 cell development. J Immunol 181, 5842-5846 https://doi.org/10.4049/jimmunol.181.9.5842
- de Kleijn S, Langereis JD, Leentjens J et al (2013) IFN-gamma-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS One 8, e72249 https://doi.org/10.1371/journal.pone.0072249
- Schreiner B, Mitsdoerffer M, Kieseier BC et al (2004) Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 155, 172-182 https://doi.org/10.1016/j.jneuroim.2004.06.013
- Karakhanova S, Meisel S, Ring S, Mahnke K and Enk AH (2010) ERK/p38 MAP-kinases and PI3K are involved in the differential regulation of B7-H1 expression in DC subsets. Eur J Immunol 40, 254-266 https://doi.org/10.1002/eji.200939289
- Ou JN, Wiedeman AE and Stevens AM (2012) TNF-alpha and TGF-beta counter-regulate PD-L1 expression on monocytes in systemic lupus erythematosus. Sci Rep 2, 295 https://doi.org/10.1038/srep00295
- Hartley G, Regan D, Guth A and Dow S (2017) Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNFalpha. Cancer Immunol Immunother 66, 523-535 https://doi.org/10.1007/s00262-017-1955-5
- Zhang W, Liu Y, Yan Z et al (2020) IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer 8
- Zhao Q, Xiao X, Wu Y et al (2011) Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol 41, 2314-2322 https://doi.org/10.1002/eji.201041282
- Xiong HY, Ma TT, Wu BT, Lin Y and Tu ZG (2014) IL-12 regulates B7-H1 expression in ovarian cancer-associated macrophages by effects on NF-kappaB signalling. Asian Pac J Cancer Prev 15, 5767-5772 https://doi.org/10.7314/APJCP.2014.15.14.5767
- Jiang C, Yuan F, Wang J and Wu L (2017) Oral squamous cell carcinoma suppressed antitumor immunity through induction of PD-L1 expression on tumor-associated macrophages. Immunobiology 222, 651-657 https://doi.org/10.1016/j.imbio.2016.12.002
- Taube JM, Young GD, McMiller TL et al (2015) Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin Cancer Res 21, 3969-3976 https://doi.org/10.1158/1078-0432.CCR-15-0244
- Curiel TJ, Wei S, Dong H et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9, 562-567 https://doi.org/10.1038/nm863
- Song S, Yuan P, Wu H et al (2014) Dendritic cells with an increased PD-L1 by TGF-beta induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells. Int Immunopharmacol 20, 117-123 https://doi.org/10.1016/j.intimp.2014.02.027
- Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN and Gao FG (2012) TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 28, 615-621 https://doi.org/10.3892/or.2012.1822
- Pulko V, Liu X, Krco CJ et al (2009) TLR3-stimulated dendritic cells up-regulate B7-H1 expression and influence the magnitude of CD8 T cell responses to tumor vaccination. J Immunol 183, 3634-3641 https://doi.org/10.4049/jimmunol.0900974
- Huang G, Wen Q, Zhao Y, Gao Q and Bai Y (2013) NF-kappaB plays a key role in inducing CD274 expression in human monocytes after lipopolysaccharide treatment. PLoS One 8, e61602 https://doi.org/10.1371/journal.pone.0061602
- Loke P and Allison JP (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A 100, 5336-5341 https://doi.org/10.1073/pnas.0931259100
- Mezzadra R, Sun C, Jae LT et al (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106-110 https://doi.org/10.1038/nature23669
- Prima V, Kaliberova LN, Kaliberov S, Curiel DT and Kusmartsev S (2017) COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A 114, 1117-1122 https://doi.org/10.1073/pnas.1612920114
- Youngnak P, Kozono Y, Kozono H et al (2003) Differential binding properties of B7-H1 and B7-DC to programmed death-1. Biochem Biophys Res Commun 307, 672-677 https://doi.org/10.1016/S0006-291X(03)01257-9
- Zhong X, Tumang JR, Gao W, Bai C and Rothstein TL (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 37, 2405-2410 https://doi.org/10.1002/eji.200737461
- Wang H, Yao H, Li C et al (2017) PD-L2 expression in colorectal cancer: Independent prognostic effect and targetability by deglycosylation. Oncoimmunology 6, e1327494 https://doi.org/10.1080/2162402X.2017.1327494
- Fu Y, Liu CJ, Kobayashi DK et al (2020) GATA2 regulates constitutive PD-L1 and PD-L2 expression in brain tumors. Sci Rep 10, 9027 https://doi.org/10.1038/s41598-020-65915-z
- Derks S, Nason KS, Liao X et al (2015) Epithelial PD-L2 expression marks Barrett's esophagus and esophageal adenocarcinoma. Cancer Immunol Res 3, 1123-1129 https://doi.org/10.1158/2326-6066.CIR-15-0046
- Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2, 261-268 https://doi.org/10.1038/85330
- Yamazaki T, Akiba H, Iwai H et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169, 5538-5545 https://doi.org/10.4049/jimmunol.169.10.5538
- Huber S, Hoffmann R, Muskens F and Voehringer D (2010) Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 116, 3311-3320
- Inaba K, Yashiro T, Hiroki I, Watanabe R, Kasakura K and Nishiyama C (2020) Dual roles of PU.1 in the expression of PD-L2: direct transactivation with IRF4 and indirect epigenetic regulation. J Immunol 205, 822-829 https://doi.org/10.4049/jimmunol.1901008
- Kinter AL, Godbout EJ, McNally JP et al (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 181, 6738-6746 https://doi.org/10.4049/jimmunol.181.10.6738
- Yu X, Harden K, Gonzalez LC et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10, 48-57 https://doi.org/10.1038/ni.1674
- Masson D, Jarry A, Baury B et al (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49, 236-240 https://doi.org/10.1136/gut.49.2.236
- Nakai R, Maniwa Y, Tanaka Y et al (2010) Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci 101, 1326-1330 https://doi.org/10.1111/j.1349-7006.2010.01530.x
- Bevelacqua V, Bevelacqua Y, Candido S et al (2012) Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget 3, 882-892 https://doi.org/10.18632/oncotarget.594
- Triki H, Charfi S, Bouzidi L et al (2019) CD155 expression in human breast cancer: clinical significance and relevance to natural killer cell infiltration. Life Sci 231, 116543 https://doi.org/10.1016/j.lfs.2019.116543
- Hirota T, Irie K, Okamoto R, Ikeda W and Takai Y (2005) Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway. Oncogene 24, 2229-2235 https://doi.org/10.1038/sj.onc.1208409
- Schummer P, Kuphal S, Vardimon L, Bosserhoff AK and Kappelmann M (2016) Specific c-Jun target genes in malignant melanoma. Cancer Biol Ther 17, 486-497 https://doi.org/10.1080/15384047.2016.1156264
- Martinet L and Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15, 243-254 https://doi.org/10.1038/nri3799
- Fionda C, Abruzzese MP, Zingoni A et al (2015) Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer 15, 17 https://doi.org/10.1186/s12885-015-1023-5
- Soriani A, Zingoni A, Cerboni C et al (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503-3511 https://doi.org/10.1182/blood-2008-08-173914
- Fionda C, Abruzzese MP, Zingoni A et al (2015) The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma. Oncotarget 6, 23609-23630 https://doi.org/10.18632/oncotarget.4603
- Gong J, Fang L, Liu R et al (2014) UPR decreases CD226 ligand CD155 expression and sensitivity to NK cell-mediated cytotoxicity in hepatoma cells. Eur J Immunol 44, 3758-3767 https://doi.org/10.1002/eji.201444574
- Zitti B, Molfetta R, Fionda C et al (2017) Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Sci Rep 7, 10445 https://doi.org/10.1038/s41598-017-10403-0
- Stanietsky N, Rovis TL, Glasner A et al (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43, 2138-2150 https://doi.org/10.1002/eji.201243072
- Chauvin JM, Pagliano O, Fourcade J et al (2015) TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest 125, 2046-2058 https://doi.org/10.1172/JCI80445
- Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JS and Gasser S (2013) Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS One 8, e54406 https://doi.org/10.1371/journal.pone.0054406
- Rangachari M, Zhu C, Sakuishi K et al (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18, 1394-1400 https://doi.org/10.1038/nm.2871
- Huang YH, Zhu C, Kondo Y et al (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386-390 https://doi.org/10.1038/nature13848
- Yang R, Sun L, Li CF et al (2021) Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun 12, 832 https://doi.org/10.1038/s41467-021-21099-2
- Li H, Wu K, Tao K et al (2012) Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 56, 1342-1351 https://doi.org/10.1002/hep.25777
- Wiener Z, Kohalmi B, Pocza P et al (2007) TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells. J Invest Dermatol 127, 906-914 https://doi.org/10.1038/sj.jid.5700616
- Kammerer R, Stober D, Singer BB, Obrink B and Reimann J (2001) Carcinoembryonic antigen-related cell adhesion molecule 1 on murine dendritic cells is a potent regulator of T cell stimulation. J Immunol 166, 6537-6544 https://doi.org/10.4049/jimmunol.166.11.6537
- Horst AK, Bickert T, Brewig N et al (2009) CEACAM1+ myeloid cells control angiogenesis in inflammation. Blood 113, 6726-6736 https://doi.org/10.1182/blood-2008-10-184556
- Gebauer F, Wicklein D, Horst J et al (2014) Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. PLoS One 9, e113023 https://doi.org/10.1371/journal.pone.0113023
- Dardalhon V, Anderson AC, Karman J et al (2010) Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol 185, 1383-1392 https://doi.org/10.4049/jimmunol.0903275
- Zhou J, Jiang Y, Zhang H et al (2019) Clinicopathological implications of TIM3(+) tumor-infiltrating lymphocytes and the miR-455-5p/Galectin-9 axis in skull base chordoma patients. Cancer Immunol Immunother 68, 1157-1169 https://doi.org/10.1007/s00262-019-02349-1
- Yang Q, Jiang W, Zhuang C et al (2015) microRNA-22 downregulation of galectin-9 influences lymphocyte apoptosis and tumor cell proliferation in liver cancer. Oncol Rep 34, 1771-1778 https://doi.org/10.3892/or.2015.4167
- Zhang L, Tian S, Zhao M et al (2020) SUV39H1-DNMT3Amediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer Cell Int 20, 325 https://doi.org/10.1186/s12935-020-01380-y
- Maruhashi T, Okazaki IM, Sugiura D et al (2018) LAG-3 inhibits the activation of CD4(+) T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat Immunol 19, 1415-1426 https://doi.org/10.1038/s41590-018-0217-9
- Reith W, LeibundGut-Landmann S and Waldburger JM (2005) Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 5, 793-806 https://doi.org/10.1038/nri1708
- Kouo T, Huang L, Pucsek AB et al (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 3, 412-423 https://doi.org/10.1158/2326-6066.CIR-14-0150
- Xu F, Liu J, Liu D et al (2014) LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 74, 3418-3428 https://doi.org/10.1158/0008-5472.CAN-13-2690
- Wang J, Sanmamed MF, Datar I et al (2019) Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 176, 334-347 e312 https://doi.org/10.1016/j.cell.2018.11.010
- Nakahara S, Oka N and Raz A (2005) On the role of galectin-3 in cancer apoptosis. Apoptosis 10, 267-275 https://doi.org/10.1007/s10495-005-0801-y
- Fei F, Joo EJ, Tarighat SS et al (2015) B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3. Oncotarget 6, 11378-11394 https://doi.org/10.18632/oncotarget.3409
- Kim K, Mayer EP and Nachtigal M (2003) Galectin-3 expression in macrophages is signaled by Ras/MAP kinase pathway and up-regulated by modified lipoproteins. Biochim Biophys Acta 1641, 13-23 https://doi.org/10.1016/S0167-4889(03)00045-4
- Liu L, Sakai T, Sano N and Fukui K (2004) Nucling mediates apoptosis by inhibiting expression of galectin-3 through interference with nuclear factor kappaB signalling. Biochem J 380, 31-41 https://doi.org/10.1042/bj20031300
- Dominguez-Soto A, Aragoneses-Fenoll L, Martin-Gayo E et al (2007) The DC-SIGN-related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood 109, 5337-5345 https://doi.org/10.1182/blood-2006-09-048058
- Liu Z and Ukomadu C (2008) Fibrinogen-like protein 1, a hepatocyte derived protein is an acute phase reactant. Biochem Biophys Res Commun 365, 729-734 https://doi.org/10.1016/j.bbrc.2007.11.069
- Doroshow DB, Bhalla S, Beasley MB et al (2021) PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 18, 345-362 https://doi.org/10.1038/s41571-021-00473-5
- Lee BR, Chae S, Moon J et al (2020) Combination of PD-L1 and PVR determines sensitivity to PD-1 blockade. JCI Insight 5, e128633 https://doi.org/10.1172/jci.insight.128633
- Yonesaka K, Haratani K, Takamura S et al (2018) B7-H3 negatively modulates ctl-mediated cancer immunity. Clin Cancer Res 24, 2653-2664 https://doi.org/10.1158/1078-0432.CCR-17-2852