• Title/Summary/Keyword: Tumor environment

Search Result 159, Processing Time 0.028 seconds

Production of IFN-γ by TNF-α in Macrophages from Tumor Micro Environment; Significance in Angiogenic Switch Control (종양 미세 환경 내 대식세포에서 혈관 신생 조절 인자로서의 TNF-α에 의한 IFN-γ의 분비 조절)

  • Pyo, Suhk-Neung;Baek, Soyoung;Kwak, Jang-Dong;Park, Dae-Sub;Joe, Sung-Jun;Lee, Hyun Ah
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 2003
  • Background: The role of macrophages in tumor angiogenesis is known to be the production of angiogenic cytokines and growth factors including TNF-${\alpha}$. Recently, macrophage also can produce the INF-${\gamma}$ that is being studied to be involved in angiogenic inhibition. Thus, the importance of macrophages in tumor angiogenesis is might being an angiogenic switch. Thus, the hypothesis tested here is that TNF-${\alpha}$ can modulate the INF-${\gamma}$ production in the macrophages from tumor environment as a part of tumor angiogenic switch. Methods: Macrophages in tumor environment were obtained from the peritoneal cavity of C57BL/6 mice injected with B16F10 melanoma cell line for 6 or 11 days. $Mac1^+$-macrophages were purified using magnetic bead ($MACs^{TM}$; Milteny Biotech, Germany) and cultured with various concentrations of TNF-${\alpha}$ for various time points at $37^{\circ}C$. The supernatants were analyzed for IFN-${\gamma}$ or VEGF by ELISA kit (Endogen, Woburn, MA). Results: Residential macrophages from the peritoneal cavity did not respond to LPS or TNF-${\alpha}$ to produce INF-${\gamma}$. However, the cells from tumor environment produced IFN-${\gamma}$ as well as VEGF and upregulated by the addition of LPS or TNF-${\alpha}$. RT-PCR analysis revealed the external TNF-${\alpha}$-induced IFN-${\gamma}$ gene expression in the macrophages from tumor environment. Conclusion: The overall data suggest that the macrophages in tumor environment might have an important role not only in angiogenic signal but also in anti-angiogenic signal by producing related cytokines. And TNF-${\alpha}$ might be a key cytokine in tumor angiogenic switch.

C-Reactive Protein Signaling Pathways in Tumor Progression

  • Eun-Sook Kim;Sun Young Kim;Aree Moon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.473-483
    • /
    • 2023
  • Many cancers arise from sites of chronic inflammation, which creates an inflammatory microenvironment surrounding the tumor. Inflammatory substances secreted by cells in the inflammatory environment can induce the proliferation and survival of cancer cells, thereby promoting cancer metastasis and angiogenesis. Therefore, it is important to identify the role of inflammatory factors in cancer progression. This review summarizes the signaling pathways and roles of C-reactive protein (CRP) in various cancer types, including breast, liver, renal, and pancreatic cancer, and the tumor microenvironment. Mounting evidence suggests the role of CRP in breast cancer, particularly in triple-negative breast cancer (TNBC), which is typically associated with a worse prognosis. Increased CRP in the inflammatory environment contributes to enhanced invasiveness and tumor formation in TNBC cells. CRP promotes endothelial cell formation and angiogenesis and contributes to the initiation and progression of atherosclerosis. In pancreatic and kidney cancers, CRP contributes to tumor progression. In liver cancer, CRP regulates inflammatory responses and lipid metabolism. CRP modulates the activity of various signaling molecules in macrophages and monocytes present in the tumor microenvironment, contributing to tumor development, the immune response, and inflammation. In the present review, we overviewed the role of CRP signaling pathways and the association between inflammation and cancer in various types of cancer. Identifying the interactions between CRP signaling pathways and other inflammatory mediators in cancer progression is crucial for understanding the complex relationship between inflammation and cancer.

High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea

  • Jung, Bong-Kwang;Song, Hyemi;Kim, Min-Jae;Cho, Jaeeun;Shin, Eun-Hee;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.201-204
    • /
    • 2016
  • Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors.

LKB1/STK11 Tumor Suppressor Reduces Angiogenesis by Directly Interacting with VEGFR2 in Tumorigenesis

  • Seung Bae Rho;Hyun Jung Byun;Boh-Ram Kim;Chang Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

Tumor Infiltrating Lymphocytes in Ovarian Cancer

  • Gasparri, Maria Luisa;Attar, Rukset;Palaia, Innocenza;Perniola, Giorgia;Marchetti, Claudia;Donato, Violante Di;Farooqi, Ammad Ahmad;Papadia, Andrea;Panici, Pierluigi Benedetti
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3635-3638
    • /
    • 2015
  • Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker.

NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells

  • Kim, Bomi;Nam, Sorim;Lim, Ji Hyun;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression.

Emerging role of RUNX3 in the regulation of tumor microenvironment

  • Manandhar, Sarala;Lee, You Mie
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.174-181
    • /
    • 2018
  • A number of genes have been therapeutically targeted to relieve cancer, but cancer relapse is still a growing issue. The concept that the surrounding tumor environment is critical for the progression of cancer may foster an answer to the issue of cancer malignancy. Runt domain transcription factors (RUNX1, 2, and 3) are evolutionarily conserved and have been intensively studied for their roles in normal development and pathological conditions. During tumor growth, a hypoxic microenvironment and infiltration of the tumor by immune cells are common phenomena. In this review, we briefly introduce the consequences of hypoxia and immune cell infiltration into the tumor microenvironment with a focus on RUNX3 as a critical regulator. Furthermore, based on our current knowledge of the functional role of RUNX3 in hypoxia and immune cell maintenance, a probable therapeutic intervention is suggested for the effective management of tumor growth and malignancy.

TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma

  • Lee, Eun-Young;Kim, Minjeong;Choi, Beom K.;Kim, Dae Hong;Choi, Inho;You, Hye Jin
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.784-794
    • /
    • 2021
  • Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.

Mucin in cancer: a stealth cloak for cancer cells

  • Wi, Dong-Han;Cha, Jong-Ho;Jung, Youn-Sang
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.344-355
    • /
    • 2021
  • Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.

Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation

  • Xu, Henan;Toyota, Naoka;Xing, Yanjiang;Fujita, Yuuki;Huang, Zhijun;Touma, Maki;Wu, Qiong;Sugimoto, Kenkichi
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of $CD11b^+$ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-${\alpha}$), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells.