Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.5.152

Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation  

Xu, Henan (Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University)
Toyota, Naoka (Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University)
Xing, Yanjiang (Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University)
Fujita, Yuuki (Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University)
Huang, Zhijun (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Touma, Maki (Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University)
Wu, Qiong (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Sugimoto, Kenkichi (Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University)
Publication Information
BMB Reports / v.47, no.5, 2014 , pp. 286-291 More about this Journal
Abstract
Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of $CD11b^+$ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-${\alpha}$), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells.
Keywords
IL-18; macrophages; phagocytosis; Nos2; angiogenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Micallef, M. J., T. Ohtsuki, K. Kohno, F. Tanabe, S. Ushio, M. Namba, T. Tanimoto, K. Torigoe, M. Fuji, M. Ikeda, S. Fukuda and M. Kurimoto (1996) Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: Synergism with interleukin-12 for interferon-gamma production. Eur. J. Immunol. 26, 1647-1651.   DOI   ScienceOn
2 Murdoch, C., M. Muthana, S. B. Coffelt and C. E. Lewis (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer. 8, 618-631.   DOI   ScienceOn
3 Solinas, G., G. Germano, A. Mantovani and P. Allavena (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukocyte. Biol. 86, 1065-1073.   DOI   ScienceOn
4 Gu, Y., Kuida, K., Tsutsui, H. and H. K. Ku G (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 275(5297), 206-209.   DOI   ScienceOn
5 Tse, B. W. C., P. J. Russell, M. Lochner, I. Forster and C. A. Power (2011) IL-18 Inhibits Growth of Murine Orthotopic Prostate Carcinomas via Both Adaptive and Innate Immune Mechanisms. Plos One. 6, e24241-24212.   DOI
6 Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. pp 1182-1186.
7 Ding, Y. T., S. Kumar and D. C. Yu (2008) The Role of Endothelial Progenitor Cells in Tumour Vasculogenesis. Pathobiology. 75, 265-273.   DOI   ScienceOn
8 Stuyt, R. J., M. G. Netea, T. B. Geijtenbeek, B. J. Kullberg, C. A. Dinarello and J. W. van der Meer (2003) Selective regulation of intercellular adhesion molecule-1 expression by interleukin- 18 and interleukin-12 on human monocytes. Immunology. 110, 329-334.   DOI   ScienceOn
9 Coma, G., R. Pena, J. Blanco, A. Rosell, F. E. Borras, J. A. Este, B. Clotet, L. Ruiz, R. M. E. Parkhouse and M. Bofill (2006) Treatment of monocytes with interleukin (IL)-12 plus IL-18 stimulates survival, differentiation and the production of CXC chemokine ligands (CXCL)8, CXCL9 and CXCL10. Clin. Exp. Immunol. 145, 535-544.   DOI   ScienceOn
10 Morel, J. C., C. C. Park, J. M. Woods and A. E. Koch (2001) A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J. Biol. Chem. 276, 37069-37075.   DOI   ScienceOn
11 Netea, M. G., B. J. Kullberg, I. Verschueren and J. W. M. Van der Meer (2000) Interleukin-18 induces production of proinflammatory cytokines in mice: no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-1 beta. Eur. J. Immunol. 30, 3057-3060.   DOI
12 Hikosaka, S., I. Hara, H. Miyake, S. Hara and S. Kamidono (2004) Antitumor effect of simultaneous transfer of interleukin-12 and interleukin-18 genes and its mechanism in a mouse bladder cancer model. Int. J. Urol. 11, 647-652.   DOI   ScienceOn
13 Schindler, H., M. B. Lutz, M. Rollinghoff and C. Bogdan (2001) The production of IFN-gamma by IL-12/IL-18-activated macrophages requires STAT4 signaling and is inhibited by IL-4. J. Immunol. 166, 3075-3082.   DOI
14 Biswas, S. K., A. Sica and C. E. Lewis (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J. Immunol. 180, 2011-2017.   DOI
15 Kim, S. F., D. A. Huri and S. H. Snyder (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science. 310, 1966-1970.   DOI   ScienceOn
16 Peng, J., J. Y. Tsang, D. Li, N. Niu, D. H. Ho, K. F. Lau, V. C. Lui, J. R. Lamb, Y. Chen and P. K. Tam (2013) Inhibition of TGF-beta signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 331, 239-249.   DOI   ScienceOn
17 Takeda, Y., S. Costa, E. Delamarre, C. Roncal, R. L. de Oliveira, M. L. Squadrito, V. Finisguerra, S. Deschoemaeker, F. Bruyere, M. Wenes, A. Hamm, J. Serneels, J. Magat, T. Bhattacharyya, A. Anisimov, B. F. Jordan, K. Alitalo, P. Maxwell, B. Gallez, Z. W. Zhuang, Y. Saito, M. Simons, M. De Palma and M. Mazzone (2011) Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature. 479, 122-U153.   DOI   ScienceOn
18 Spence, S., A. Fitzsimons, C. R. Boyd, J. Kessler, D. Fitzgerald, J. Elliott, J. N. Gabhann, S. Smith, A. Sica, E. Hams, S. P. Saunders, C. A. Jefferies, P. G. Fallon, D. F. McAuley, A. Kissenpfennig and J. A. Johnston (2013) Suppressors of cytokine signaling 2 and 3 diametrically control macrophage polarization. Immunity. 38, 66-78.   DOI   ScienceOn
19 Saccani, A., T. Schioppa, C. Porta, S. K. Biswas, M. Nebuloni, L. Vago, B. Bottazzi, M. P. Colombo, A. Mantovani and A. Sica (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 66, 11432-11440.   DOI   ScienceOn
20 Hao, N. B., M. H. Lu, Y. H. Fan, Y. L. Cao, Z. R. Zhang and S. M. Yang (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012, 948098-948108.
21 Engin, A. B. (2011) Dual Function of Nitric Oxide in Carcinogenesis, Reappraisal. Curr. Drug. Metab. 12, 891-899.   DOI   ScienceOn
22 Suganuma, H., J. W. Fahey, K. E. Bryan, Z. R. Healy and P. Talalay (2011) Stimulation of phagocytosis by sulforaphane. Biochem. Bioph. Res. Co. 405, 146-151.   DOI   ScienceOn
23 Keller, R., R. Keist, A. Wechsler, T. P. Leist and P. H. Vandermeide (1990) Mechanisms of Macrophage-Mediated Tumor-Cell Killing - a Comparative-Analysis of the Roles of Reactive Nitrogen Intermediates and Tumor-Necrosis-Factor. Int J Cancer. 46, 682-686.   DOI
24 Yamanishi, T., T. Hatakeyama, K. Yamaguchi and T. Oda (2009) CEL-I, an N-Acetylgalactosamine (GalNAc)-Specific C-Type Lectin, Induces Nitric Oxide Production in RAW264.7 Mouse Macrophage Cell Line. J. Biochem. 146, 209-217.   DOI   ScienceOn
25 Raschke, W. C., S. Baird, P. Ralph and I. Nakoinz (1978) Functional Macrophage Cell Lines Transformed by Abelson Leukemia-Virus. Cell. 15, 261-267.   DOI   ScienceOn
26 Ando, K., N. Hunter and L. J. Peters (1979) Immunologically Nonspecific Enhancement of Artificial Lung Metastases in Tumor-Bearing Mice. Cancer Immunol. Immun. 6, 151-156.
27 Shirata, K., T. Suzuki, N. Yanaihara, K. Sugimoto and K. J. Mori (1991) Establishment of a Sarcoma Cell-Line, Ms-K, Expressing Ki-Ras Protooncogene Product from Mouse Bone-Marrow Stromal Cells. Biomed. Pharmacother. 45, 1-8.   DOI
28 Toda, K. I., K. Tsujioka, Y. Maruguchi, K. Ishii, Y. Miyachi, K. Kuribayashi and S. Imamura (1990) Establishment and Characterization of a Tumorigenic Murine Vascular Endothelial-Cell Line (F2). Cancer Res. 50, 5526-5530.
29 Ushio, S., M. Namba, T. Okura, K. Hattori, Y. Nukada, K. Akita, F. Tanabe, K. Konishi, M. Micallef, M. Fujii, K. Torigoe, T. Tanimoto, S. Fukuda, M. Ikeda, H. Okamura and M. Kurimoto (1996) Cloning of the cDNA for human IFN-gamma-lnducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J. Immunol. 156, 4274-4279.
30 Zhong, X. Y., A. Yoshioka, Y. Mashio, T. Ikeda, H. Jiang, M. Touma, Q. Wu, C. Wang and K. Sugimoto (2011) Effect of vegf gene knockdown on growth of the murine sarcoma cell line MS-K. Genes Cells. 16, 625-638.   DOI   ScienceOn
31 Bogdan, C. and U. Schleicher (2006) Production of interferon-gamma by myeloid cells - fact or fancy? Trends Immunol. 27, 282-290.   DOI   ScienceOn
32 Zheng, J. N., D. S. Pei, L. J. Mao, X. Y. Liu, F. H. Sun, B. F. Zhang, Y. Q. Liu, J. J. Liu, W. Li and D. Han (2010) Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther. 17, 28-36.   DOI   ScienceOn
33 Mantovani, A., S. Sozzani, M. Locati, P. Allavena and A. Sica (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549-555.   DOI   ScienceOn
34 Sica, A., P. Larghi, A. Mancino, L. Rubino, C. Porta, M. G. Totaro, M. Rimoldi, S. K. Biswas, P. Allavena and A. Mantovani (2008) Macrophage polarization in tumour progression. Semin. Cancer Biol. 18, 349-355.   DOI   ScienceOn