• Title/Summary/Keyword: Tumor cell lines

Search Result 831, Processing Time 0.024 seconds

Physiological Functionality and Cytotoxic Effect of Korean Traditional Noble Wine, Samhaeju, and Commercial Rice Wine on Various Tumor Cell Lines (삼해주와 시판 곡주의 생리 기능성 및 세포 독성 효과)

  • Lim, Chae-Lan;Son, Hee-Jin;Cho, In-Young;Kim, Gye-Won;Choi, Soo-Jin;Kim, In-Sun;Han, Kee-Young;Choi, Jin-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.687-693
    • /
    • 2009
  • This study was conducted to investigate the antioxidant activity, fibrinolytic activity and cytotoxic effect of Korean traditional noble rice wine made using different methods (A-C) and commercial rice wine (D-H) on various tumor cell lines. The antioxidant activity of rice wine was measured by DPPH (2,2-dipicryl-1-picrylhydrazyl), ABTS [2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid)] and NO (nitric oxide) radical scavenging assay. In this study, Samhaeju showed the greatest fibrinolytic activity of 13-17U and exhibited the highest antioxidant activity. Among the different Samhaeju, the sample prepared using method C had the highest antioxidant activity. The cytotoxic effect of rice wine were also examined against the human cancer cell line (A549 cells and HeLa cells) based on the results of a WST-1 assay and morphological changes. Rice wine induced the inhibition of cell proliferation and morphological changes in tumor cell lines in a concentration-dependent manner, with Samhaeju diluted 10 fold having the strongest effect on these factors. These findings suggest that Korean rice wine has antioxidant activity and cytotoxic effect, and that these factors are influenced by the method of preparation.

Anti-inflammatory and Anticancer Activities of Ethanol Extract of Pendulous Monkshood Root in vitro

  • Huang, Xian-Ju;Ren, Wei;Li, Jun;Chen, Lv-Yi;Mei, Zhi-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3569-3573
    • /
    • 2013
  • Aim: Pendulous monkshood root is traditionally used for the treatment of several inflammatory pathologies such as rheumatisms, wounds, pain and tumors in China. In this study, the anti-inflammatory and anticancer activities and the mechanism of crude ethanol extract of pendulous monkshood root (EPMR) were evaluated and investigated in vitro. Materials and Methods: The cytotoxic effects of EPMR on different tumor cell lines were determined by the MTT method. Cell apoptosis and cell nucleus morphology were assessed by Hoechst 33258 staining. Moreover, nitric oxide (NO) levels and intracellular oxidative stress in peritoneal macrophages were determined to further elucidate mechanisms of action. Results: The data showed that EPMR could produce significant dose-dependent toxicity on three kinds of tumor cells. Furthermore, EPMR displayed obvious anti-inflammatory effects on LPS-induced mouse peritoneal macrophages at the dosage of 4 - 200 ${\mu}g/mL$. The results demonstrated the therapeutic potential of Pendulous Monkshood Root on cancer and inflammatory diseases. Conclusion: Our results indicate that EPMR has anti-inflammatory and anticancer properties, suggesting that pendulous monkshood root may be a useful anti-tumor and anti-inflammatory reagent in the clinic.

Antitumoral Compound , MCH-201 , an Effector on Proliferation and Morphology of Human Breast Tumor Cell Line, MCF-7 (인체유암세포주 MCF-7의 형태변화와 증식에 영향을 주는 항암활성물질, MCH-201)

  • Kim, Hang-Sub;Kim, Se-Eun;Kim, Young-Ho;Lee, Sung-Woo;Oh, Goo-Taeg;Kim, Hwan-Mook;Lee, Jung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.316-321
    • /
    • 1993
  • MCH-201 was isolated from the mycelium of Streptomyces sp. Ba16 as a potent effector on proliferation and morphology of human breast tumor cell line, MCF-7. Morphological change could be observed at concentration between 2.5${\mu}$g/ml and 250pg/ml and showed cytotoxic effect at the concentration of more than 5${\mu}$g/ml. This compound also showed inhibitory effect on DNA synthesis of hepatoma cells, Hepa 1c1c7, and strong cytotoxic effect on proliferation of human tumor cell lines, A549 and XF498.

  • PDF

Rhei Rhizoma Extracts Have Antiproliferative Properties and Differential Effects on NO Production in Macrophages

  • Pyo, Suh-Kneung;Son, Eun-Wha
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.273-277
    • /
    • 2006
  • Recently, Rhei Rhizoma extracts (RRE) have begun to receive more attention as potential biological response modifiers. In the present study, we studied the antiproliferative effect of RRE on tumor cells and the effect of RRE on macrophage function. A variety of tumor cells and macrophages were treated with RRE at various concentrations. The effect of RRE on cell proliferation was measured by MTT assay and the effect of RRE on the production of nitric oxide (NO) was determined in the macrophage-like cell lines Raw264.7, C6 and peritoneal macrophages (pMQ). RRE inhibited the growth of tumor cells (e.g., B16, HOS). However, the effects of RRE on the production of NO varied with macrophage types. RRE had no effect on C6 cell growth and slightly increased the growth of Raw264.7 cells. In addition, treatment of normal pMQ with RRE enhanced NO production in a concentration-dependent manner, whereas RRE suppressed NO production at $50\;{\mu}g/mL$ in both Raw264.7 and C6 cells. However, RRE suppressed NO production in LPS/IFN-$\gamma$-stimulated C6 cells. Overall, these results suggest that RRE elicits an antiproliferative property and differentially modulates NO production in various macrophages, and have a potential for therapeutic application.

Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway

  • Shi, Zhe;Zhou, Liyuan;Zhou, Yan;Jia, Xiaoyan;Yu, Xiangjun;An, Xiaohong;Han, Yanzhen
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.299-304
    • /
    • 2022
  • Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway.

Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells

  • Hyunji Choi;Moonkyung Kang;Kee-Ho Lee;Yeon-Soo Kim
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.612-617
    • /
    • 2023
  • Pleiotropic regulator 1 (PLRG1), a highly conserved element in the spliceosome, can form a NineTeen Complex (NTC) with Prp19, SPF27, and CDC5L. This complex plays crucial roles in both pre-mRNA splicing and DNA repair processes. Here, we provide evidence that PLRG1 has a multifaceted impact on cancer cell proliferation. Comparing its expression levels in cancer and normal cells, we observed that PLRG1 was upregulated in various tumor tissues and cell lines. Knockdown of PLRG1 resulted in tumor-specific cell death. Depletion of PLRG1 had notable effects, including mitotic arrest, microtubule instability, endoplasmic reticulum (ER) stress, and accumulation of autophagy, ultimately culminating in apoptosis. Our results also demonstrated that PLRG1 downregulation contributed to DNA damage in cancer cells, which we confirmed through experimental validation as DNA repair impairment. Interestingly, when PLRG1 was decreased in normal cells, it induced G1 arrest as a self-protective mechanism, distinguishing it from effects observed in cancer cells. These results highlight multifaceted impacts of PLRG1 in cancer and underscore its potential as a novel anti-cancer strategy by selectively targeting cancer cells.

siRNA Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells

  • Huang, Wei-Yi;Chen, Dong-Hui;Ning, Li;Wang, Li-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1823-1827
    • /
    • 2012
  • The gene encoding the Nin one binding (NOB1) protein which plays an essential role in protein degradation has been investigated for possible tumor promoting functions. The present study was focused on NOB1 as a possible therapeutic target for breast cancer treatment. Lentivirus mediated NOB1 siRNA transfection was used to silence the NOB1 gene in two established breast cancer cell lines, MCF-7 and MDA-MB-231, successful transfection being confirmed by fluorescence imaging. NOB1 deletion caused significant decline in cell proliferation was observed in both cell lines as investigated by MTT assay. Furthermore the number and size of the colonies formed were also significantly reduced in the absence of NOB1. Moreover NOB1 gene knockdown arrested the cell cycle and inhibited cell cycle related protein expression. Collectively these results indicate that NOB1 plays an essential role in breast cancer cell proliferation and its gene expression could be a therapeutic target.

Ets-1 enhances tumor migration through regulation of CCR7 expression

  • Fang, Li-Wen;Kao, Ying-Hsien;Chuang, Ya-Ting;Huang, Huey-Lan;Tai, Tzong-Shyuan
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.548-553
    • /
    • 2019
  • Ets-1 is a prototype of the ETS protein family. Members of the ETS protein family contain a unique ETS domain. Ets-1 is associated with cancer progression and metastasis in many types of cancer. Many studies have shown a link between elevated expression of Ets-1 in cancer biopsies and poor survival. CCR7 is a chemokine that binds to specific ligand CCL21/CCL19. CCR7 expression is associated with tumor metastasis and infiltration into lymph nodes. The objective of this study was to test whether Ets-1 could regulate CCR7 expression and enhance tumor metastasis. Our data showed that CCR7 expression was downregulated in Ets-1-deficient T cells upon T-cell stimulation. Overexpression of Ets-1 increased CCR7 expression in breast cancer cell lines. In contrast, knockdown of Ets-1 reduced CCR7 expression. Ets-1 could directly bind to CCR7 promoter and mediate CCR7 expression in luciferase reporter assays and chromatin immunoprecipitation assays. Transactivation activity of Ets-1 was independent of the Pointed domain of Ets-1. Ets-1 could also enhance $NF-{\kappa}B$ and CBP transactivation of CCR7 promoter. Our results also showed that Ets-1 could modulate cancer cell transmigration by altering CCR7 expression in transwell assay and wound healing assay. Taken together, our data suggest that Ets-1 can enhance CCR7 expression and contribute to tumor cell migration.

Circ-SNX27 sponging miR-375/RPN1 axis contributes to hepatocellular carcinoma progression

  • Chao Zheng;Jin Liang;Shoude Yu;Hua Xu;Lin Dai;Dan Xu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.333-344
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) is a prevalent malignant tumor with high fatality. It has yet to be reported whether circ-SNX27 can affect the progression of HCC. This study attempted to analyze circ-SNX27's precise role and underlying mechanisms in HCC. HCC cell lines and tumor specimens from HCC patients were analyzed using quantitative real-time PCR and Western blotting to quantify the expressions of circ-SNX27, miR-375, and ribophorin I (RPN1). Cell invasion and cell counting kit 8 experiments were conducted for the evaluation of HCC cell invasion and proliferation. Caspase-3 Activity Assay Kit was utilized to gauge the caspase-3 activity. Luciferase reporter and RNA immunoprecipitation assays were executed to ascertain the relationships among miR-375, circ-SNX27, and RPN1. To determine how circ-SNX27 knockdown affects the growth of HCC xenografts in vivo, tumor-bearing mouse models were constructed. Elevated expressions of circ-SNX27 and RPN1 as well as a reduced miR-375 expression were observed among HCC cells and HCC patient tumor specimens. Knocking-down circ-SNX27 in HCC cells abated their proliferative and invasive abilities but raised their caspase-3 activity. Moreover, the poor levels of circ-SNX27 inhibited HCC tumor growth among the mice. Circ-SNX27 enhanced RPN1 by competitively binding with miR-375. Silencing miR-375 in HCC cells promoted their malignant phenotypes. Nonetheless, the promotive effect of miR375 silencing was reversible via the knockdown of circ-SNX27 or RPN1. This research demonstrated that circ-SNX27 accelerated the progression of HCC by modulating the miR-375/RPN1 axis. This is indicative of circ-SNX27's potential as a target for the treatment of HCC.

Antineoplastic Effect of Low Molecular Weight Chitooligosaccharide on Various Tumor Cell Lines (저분자량 키토산 올리고당의 항종양성)

  • Park, Heon-Kuk
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.308-312
    • /
    • 2009
  • In this study, the effects of low molecular weight chitooligosaccharides were assessed. Low molecular weight chitooligosaccharide evidenced no cytotoxicity in in vitro trials with the normal cell line, Vero E6(Africa green monkey kidney cell). The $IC_{50}$ of low molecular weight chitooligosaccharide was $923.20{\mu}g/m{\ell}$. Low molecular weight chitooligosaccharide exhibited in vitro antineoplastic activity in five human tumor(lung carcinoma, bladder carcinoma, colon carcinoma, stomach carcinoma, breast carcinoma) cell lines. The $IC_{50}$ values of low molecular weight chitooligosaccharide on A549, J82, SNU-C4, SNU-1 and ZR75-1 were $477.42{\mu}g/m{\ell}$, $480.40{\mu}g/m{\ell}$, $436.84{\mu}g/m{\ell}$, $373.55{\mu}g/m{\ell}$, and $539.95{\mu}g/m{\ell}$, respectively.