• 제목/요약/키워드: Tumor Proliferation

검색결과 1,230건 처리시간 0.023초

Silencing of PDK1 Gene Expression by RNA Interference Suppresses Growth of Esophageal Cancer

  • Yu, Jing;Chen, Kui-Sheng;Li, Ya-Nan;Yang, Juan;Zhao, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4147-4151
    • /
    • 2012
  • The current study was conducted to explore the inhibitory effects of a small interfering RNA (siRNA) on 3-phosphoinositide-dependent protein kinase 1 (PDK1) expression in esophageal cancer 9706 (EC9706) cells and the influence on their biological behavior. After transfection of a synthesized PDK1 siRNA, PDK1 mRNA and protein expression and the phosphorylation level of the downstream Akt protein were assessed using RT-PCR and Western blot analysis. Proliferation, apoptosis, cell invasion and in vivo tumor formation capacity were also investigated using MTT, flow cytometry, Transwell invasion trials, and nude mouse tumor transplantion, respectively. PDK1 siRNA effectively suppressed PDK1 mRNA and protein expression, and down-regulated the phosphorylation level of the Akt protein in the EC9706 cells (P < 0.05). It also inhibited cell proliferation and invasion, and promoted apoptosis; such effects were particularly obvious at 48 h and 72 h after transfection (P < 0.05). Growth of transplanted tumors was inhibited in nude mice, with decreased PDK1 expression in tumor tissues. PDK1 may be closely correlated with proliferation, apoptosis and invasion of esophageal cancer cells and thus may serve as an effective target for gene therapy.

Effects of Extracts from Acanthopanax sessiliflorus SEEM Following Gamma-ray Irradiation on Solid Tumor and Immune Cells in Mice (방사선이 조사된 오갈피 나무의 추출물이 생쥐의 복강암 및 면역세포에 미치는 영향)

  • Kim, Hyung-Woo;Cho, Su-In;Kim, Gye-Yeop;Jeon, Byung-Gwan;Cho, Young-Lim;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제21권3호
    • /
    • pp.736-740
    • /
    • 2007
  • Acanthopanax sessiliflorus SEEM extracts(AS) have been used to treat patient with diseases including cancer in Oriental countries. Recently, AS was known to have anti-cancer and immuno-stimulating activites. For these reasons, we investigated the effects of AS following gamma-ray irradiation on cytotoxicity for solid tumor cell line (S-180) and immune-potentiating ability such as proliferation of thymocytes and splenocytes. Finally we also investigated tumor weight and survival rate in tumor bearing mice. In our results, Treatment with AS suppressed proliferation of solid tumor cells (S-180) effectively. Treatment with AS accelerated thymocyte and splenocyte proliferation in tumor bearing mice. In addition, Treatment with AS reduced tumor weight and prolonged life of tumor bearing mice. In conclusion, we demonstrate that AS following gamma-ray irradiation is useful to treat patients with cancer, and also demonstrate that AS have both direct cytotoxic ability for cancer cells and indirect immune-stimulating action for thymocytes and splenocytes.

OK-432 Suppresses Proliferation and Metastasis by Tumor Associated Macrophages in Bladder Cancer

  • Tian, Yuan-Feng;Tang, Kun;Guan, Wei;Yang, Tao;Xu, Hua;Zhuang, Qian-Yuan;Ye, Zhang-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권11호
    • /
    • pp.4537-4542
    • /
    • 2015
  • OK-432, a Streptococcus-derived anticancer immunotherapeutic agent, has been applied in clinic for many years and achieved great progress in various cancers. In the present study, we investigated its anticancer effect on bladder cancer through tumor associated macrophages (TAMs). MTS assay validated OK-432 could inhibit proliferation in both T24 and EJ bladder cell lines. OK-432 also induced apoptosis of bladder cancer cells in vitro. Consequently, we demonstrated that OK-432 could suppress the bladder cancer cells migration and invasion by altering the EMT-related factors. Furthermore, using SD rat model, we revealed that OK-432 inhibited tumor growth, suppressed PCNA expression and inhibited metastasis in vivo. Taken together, these findings strongly suggest that OK-432 inhibits cell proliferation and metastasis through inducing macrophages to secret cytokines in bladder cancer.

The role of NUMB/NUMB isoforms in cancer stem cells

  • Choi, Hye Yeon;Seok, Jaekwon;Kang, Geun-Ho;Lim, Kyung Min;Cho, Ssang-Goo
    • BMB Reports
    • /
    • 제54권7호
    • /
    • pp.335-343
    • /
    • 2021
  • Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs.

Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway

  • Shi, Zhe;Zhou, Liyuan;Zhou, Yan;Jia, Xiaoyan;Yu, Xiangjun;An, Xiaohong;Han, Yanzhen
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.299-304
    • /
    • 2022
  • Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway.

A Functional SNP in the MDM2 Promoter Mediates E2F1 Affinity to Modulate Cyclin D1 Expression in Tumor Cell Proliferation

  • Yang, Zhen-Hai;Zhou, Chun-Lin;Zhu, Hong;Li, Jiu-Hong;He, Chun-Di
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3817-3823
    • /
    • 2014
  • Background: The MDM2 oncogene, a negative regulator of p53, has a functional polymorphism in the promoter region (SNP309) that is associated with multiple kinds of cancers including non-melanoma skin cancer. SNP309 has been shown to associate with accelerated tumor formation by increasing the affinity of the transcriptional activator Sp1. It remains unknown whether there are other factors involved in the regulation of MDM2 transcription through a trans-regulatory mechanism. Methods: In this study, SNP309 was verified to be associated with overexpression of MDM2 in tumor cells. Bioinformatics predicts that the T to G substitution at SNP309 generates a stronger E2F1 binding site, which was confirmed by ChIP and luciferase assays. Results: E2F1 knockdown downregulates the expression of MDM2, which confirms that E2F1 is a functional upstream regulator. Furthermore, tumor cells with the GG genotype exhibited a higher proliferation rate than TT, correlating with cyclin D1 expression. E2F1 depletion significantly inhibits the proliferation capacity and downregulates cyclin D1 expression, especially in GG genotype skin fibroblasts. Notably, E2F1 siRNA effects could be rescued by cyclin D1 overexpression. Conclusion: Taken together, a novel modulator E2F1 was identified as regulating MDM2 expression dependent on SNP309 and further mediates cyclin D1 expression and tumor cell proliferation. E2F1 might act as an important factor for SNP309 serving as a rate-limiting event in carcinogenesis.

Adenine Inhibits B16-F10 Melanoma Cell Proliferation

  • Silwal, Prashanta;Park, Seung-Kiel
    • Biomedical Science Letters
    • /
    • 제26권3호
    • /
    • pp.179-185
    • /
    • 2020
  • Adenine, a purine base, is a structural component of essential biomolecules such as nucleic acids and adenine nucleotides. Its physiological roles have been uncovered. Adenine suppresses IgE-mediated allergy and LPS-induced inflammation. Although adenine is known to inhibit lymphocyte proliferation, the effect of adenine to melamoma cells is not reported. Here, we investigated the growth inhibitory effects of adenine on B16-F10 mouse melanoma cells. Adenine suppressed the proliferation of B16-F10 cells in dose-dependent manner with the maximal inhibitory dose of 2 mM. Adenine treatment induced cell death molecular markers such as PARP and caspase 3 cleavages. Pan-caspase inhibitor z-VAD dramatically rescued the cell death molecular markers, cell proliferation recovered marginally. These results provide the possibility of adenine to be used as an anti-tumor agent.

Cytotoxicity of Petroleum Ether Extract of Euonymus alatus (귀전우 Petroleum Ether 추출물의 세포독성)

  • Eun, Jae-Soon;Park, Sang-Ho;Kweon, Jin;Kim, Young-Ahn;Kang, Sung-Young;Oh, Chan-Ho;Jeon, Hoon
    • Korean Journal of Pharmacognosy
    • /
    • 제26권3호
    • /
    • pp.253-258
    • /
    • 1995
  • The purpose of this research was to investigate the effects of petroleum ether extract of Euonymus alatus (EAP) on the proliferation of human tumor cells. EAP inhibited the proliferation of HeLa, Hep G2, KHOS/NP and A431 cells. The cytotoxicity of doxorubicin on human tumor cells and Balb/c 3T3 cells were increased by the combination of EAP. EAP did not affect the proliferation of Balb/c 3T3 cells, mouse spleen cells and human lymphocytes. These results suggest that EAP has the cytotoxicity on human tumor cells without cytotoxicity on Balb/c 3T3 cells, mouse spleen cells and human lymphocytes, and increase the cytotoxicity of doxorubicin.

  • PDF

Knockdown of a Proliferation-inducing Ligand (PRIL) Suppresses the Proliferation of Gastric Cancer Cells

  • Cui, Jiu-Wei;Li, Yan;Wang, Chang;Yao, Cheng;Li, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.633-636
    • /
    • 2012
  • Purpose: PRIL (proliferation-inducing ligand) is a newly identified member of the tumor necrosis factor (TNF) family and modulates death ligand-induced apoptosis. Here, we investigated the effect of PRIL on cellular characteristics relating to tumor progression in human gastric cancer. Method: Recombinant lentivirus containing PRIL siRNA was constructed and then infected MGC803 and SGC7901 gastric cancer cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colony formation and cell cycle analysis were used to study the effect of PRIL knockdown on gastric cancer cell proliferation. Results: PRIL expression in lentivirus infected cells was significantly reduced as evidenced by quantitative real-time PCR. Cell viability and colony formation of MGC803 and SGC7901 cells were significantly hampered in PRIL knock-down cells. Moreover, the cell cycle was arrested at G2/M phase, elucidating the mechanism underlying the inhibitory effect of siRNA on cell proliferation. Conclusions: Our study indicated that PRIL functions in promoting cell growth, and lentivirus-mediated PRIL gene knockdown might be a promising strategy in the treatment of gastric cancer.

The effect of TakliSodoksan extract on anti-tumor action and immune-function (托裡消毒散이 抗腫瘍 및 免疫作用에 미치는 效果)

  • Choi, Woong;Choi, Jung-hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • 제12권1호
    • /
    • pp.79-98
    • /
    • 1999
  • The purpose of this Study was to investigate effect of TakliSodokSan(TSS) on the anti-tumor, immunocytes and nitric oxide(NO) production from mice peritoneal macrophages. This Study estimated the proliferation of L1210 cell lines, A431 cell lines, Hep-G2 cell lines, K562 cell lines, 3T3 cell lines, mouse thymocytes and mouse splenocytes and NO production from pcritoneal macrophages in vitro, and estimated the proliferation of L1210 cells, thymocytes and splenocytcs, NO production from peritoneal macrophages and body weight in L1210 cells-transplanted mice in vivo. The results were obtained as follows; 1. TSS inhibited significantly the proliferation of L1210, A431, Hep-G2, K562 cell lines in vitro. 2. TSS accelerated the proliferation of mice thymocytes and splenocytes in vitro. 3. TSS was not increased the nitric oxide production from mice peritoneal macrophages in vitro. 4. TSS inhibited significantly the proliferation of L1210 cells in Ll210 cells∼transplanted mice. 5. TSS accelerated the proliferation of mice thymocytes and splenocytes In L1210 cells-transplanted mice. 6. TSS was increased significantly the nitric oxide production from mice peritoneal macrophages in L1210 cells-transplanted mice. 7. TSS was increased the body weight as comparing with control group in Ll210 cells-transplanted mice.

  • PDF