• Title/Summary/Keyword: Tumor Imaging

Search Result 1,258, Processing Time 0.024 seconds

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

A Comprehensive Analysis of Deformable Image Registration Methods for CT Imaging

  • Kang Houn Lee;Young Nam Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.303-314
    • /
    • 2023
  • This study aimed to assess the practical feasibility of advanced deformable image registration (DIR) algorithms in radiotherapy by employing two distinct datasets. The first dataset included 14 4D lung CT scans and 31 head and neck CT scans. In the 4D lung CT dataset, we employed the DIR algorithm to register organs at risk and tumors based on respiratory phases. The second dataset comprised pre-, mid-, and post-treatment CT images of the head and neck region, along with organ at risk and tumor delineations. These images underwent registration using the DIR algorithm, and Dice similarity coefficients (DSCs) were compared. In the 4D lung CT dataset, registration accuracy was evaluated for the spinal cord, lung, lung nodules, esophagus, and tumors. The average DSCs for the non-learning-based SyN and NiftyReg algorithms were 0.92±0.07 and 0.88±0.09, respectively. Deep learning methods, namely Voxelmorph, Cyclemorph, and Transmorph, achieved average DSCs of 0.90±0.07, 0.91±0.04, and 0.89±0.05, respectively. For the head and neck CT dataset, the average DSCs for SyN and NiftyReg were 0.82±0.04 and 0.79±0.05, respectively, while Voxelmorph, Cyclemorph, and Transmorph showed average DSCs of 0.80±0.08, 0.78±0.11, and 0.78±0.09, respectively. Additionally, the deep learning DIR algorithms demonstrated faster transformation times compared to other models, including commercial and conventional mathematical algorithms (Voxelmorph: 0.36 sec/images, Cyclemorph: 0.3 sec/images, Transmorph: 5.1 sec/images, SyN: 140 sec/images, NiftyReg: 40.2 sec/images). In conclusion, this study highlights the varying clinical applicability of deep learning-based DIR methods in different anatomical regions. While challenges were encountered in head and neck CT registrations, 4D lung CT registrations exhibited favorable results, indicating the potential for clinical implementation. Further research and development in DIR algorithms tailored to specific anatomical regions are warranted to improve the overall clinical utility of these methods.

Impact of 0.35 T Magnetic Field on Dose Calculation for Non-small Cell Lung Cancer Stereotactic Radiotherapy Plans

  • Jaeman Son;Sung Young Lee;Chang Heon Choi;Jong Min Park;Jung-in Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • Background: We investigated the impact of 0.35 T magnetic field on dose calculation for non-small cell lung cancer (NSCLC) stereotactic ablative radiotherapy (SABR) in the ViewRay system (ViewRay Inc.), which features a simultaneous use of magnetic resonance imaging (MRI) to guide radiotherapy for an improved targeting of tumors. Materials and Methods: Here, we present a comprehensive analysis of the effects induced by the 0.35 T magnetic field on various characteristics of SABR plans including the plan qualities and dose calculation for the planning target volume, organs at risk, and outer/inner shells. Therefore, two SABR plans were set up, one with a 0.35 T magnetic field applied during radiotherapy and another in the absence of the field. The dosimetric parameters were calculated in both cases, and the plan quality indices were evaluated using a Monte Carlo algorithm based on a treatment planning system. Results and Discussion: Our findings showed no significant impact on dose calculation under the 0.35 T magnetic field for all analyzed parameters. Nonetheless, a significant enhancement in the dose was calculated on the skin surrounding the tumor when the 0.35 T magnetic field was applied during the radiotherapy. This was attributed to the electron return effect, which results from the deviation of the electrons ejected from tissues upon radiation due to Lorentz forces. These returned electrons re-enter the tissues, causing a local dose increase in the calculated dose. Conclusion: The present study highlights the impact of the 0.35 T magnetic field used for MRI in the ViewRay system for NSCLC SABR treatment, especially on the skin surrounding the tumors.

Leksell Frame-Based Stereotactic Biopsy for Infratentorial Tumor : Practical Tips and Considerations

  • Tae-Kyu Lee;Sa-Hoe Lim;Jangshik Jeong;Su Jee Park;Yeong Jin Kim;Kyung-Sub Moon;In-Young Kim;Shin Jung;Tae-Young Jung
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.2
    • /
    • pp.249-256
    • /
    • 2024
  • The Leksell frame-based transcerebellar approach was proposed with the arc support frame attached upside down to the Z coordinate. This study presented practical tips and considerations for obtaining adequate tissue samples for deep-seated cerebellar lesions or lower brainstem lesions specifically those accessible via the cerebellar peduncle. For practical insights, the Leksell coordinate frame G was fixed to prevent the anterior screw implantation within the temporalis muscle, to avoid interference with the magnetic resonance (MR)-adapter, and taking into account the magnetic field of MR in close proximity to the tentorium. After mounting of indicator box, the MR imaging evaluation should cover both the indicator box and the infratentorial region that deviated from it. The coordinates [X, Y, Za, Arc0, Ringa0] obtained from Leksell SurgiPlan® software (Elekta, Stockholm, Sweden) with arc 00 located on the patient's right side were converted to [X, Y, Zb=360-Za, Arc0, Ringb0=Ringa0-1800]. The operation was performed in the prone position under general anesthesia in four patients with deep cerebellar (n=3) and brainstem (n=1) tumors. The biopsy results showed two cases of diffuse large B-cell lymphoma, one metastatic braintumor and one glioblastoma. One patient required frame repositioning as a complication. Drawing upon the methodology outlined in existing literature, we anticipate that imparting supplementary expertise could render the stereotactic biopsy of infratentorial tumors more consistent and manageable for the practitioner, thereby facilitating adequate tissue samples and minimizing patient complications.

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon;Kyu-Won Kang;Woo-Keyoung Kim;Sook Yang;Byung-Jae Kang
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2024
  • Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.

A Case Report of Axillary Hibernoma: US, CT, MR, and Histopathologic Findings (액와부 갈색지방종의 증례 보고: 초음파, 컴퓨터단층촬영, 자기공명영상, 병리 소견)

  • Ji Yeon Park;Seong Yoon Yi;Ji Young Lee;Tae Jung Kwon
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.439-443
    • /
    • 2022
  • Hibernoma is a rare benign tumor of brown adipose tissue. Herein, we report a case of axillary hibernoma in a 53-year-old female and discuss the various radiologic findings. The US revealed a 4.5-cm well-defined oval heterogenous hyperechoic mass in the right axilla with anterior displacement of the axillary vessels. Non-enhanced chest CT showed a 5.0-cm well defined, oval, and low-attenuated mass. MRI demonstrated a 5.5-cm mass with heterogeneous intermediate-to-high signal intensity on T1-and T2-weighted images and irregular enhancement at the peripheral portion. The patient underwent an US-guided core needle biopsy and the final diagnosis was hibernoma.

A Case Report of Vallecula Angioleiomyoma (후두개곡의 혈관평활근종 환자 예)

  • Ye Hwan Lee;Byung Jae Kang;Min Suk Kim;Hong Jin Kim;Soon Young Kwon;Kyung Ho Oh
    • Korean Journal of Head & Neck Oncology
    • /
    • v.40 no.1
    • /
    • pp.19-22
    • /
    • 2024
  • Angioleiomyoma is benign smooth muscle tumor originating from the vascular wall. While they can occur in various anatomical locations, they are rarely reported in the vallecula region of the oropharynx. We present a case of a 58-year-old female patient with a five-year history of progressive dysphagia and throat discomfort. Laryngoscopy revealed a large, soft, mobile mass located on the right side of the vallecula. Radiological imaging further characterized the lesion as a well-circumscribed, heterogeneous mass. Surgical intervention in the form of Transoral Videolaryngoscopic Surgery (TOVS) was performed, leading to the successful removal of the mass. Histopathological analysis confirmed the diagnosis of angioleiomyoma.

Dermatofibrosarcoma Protuberans on the Occipital Scalp Showed Uncommon Presentation: A Case Report (비전형적 임상양상을 보이는 후두부의 융기성 피부 섬유 육종에 대한 증례보고)

  • Jiwon Jeong;Chul Hoon Chung;SeongJin Cho
    • Korean Journal of Head & Neck Oncology
    • /
    • v.40 no.1
    • /
    • pp.49-53
    • /
    • 2024
  • Dermatofibrosarcoma protuberans (DFSP) is a rare soft tissue sarcoma, with an incidence of about 0.8% to 5% per million people per year, accounting for 1% of soft tissue sarcomas. In its early stage, DFSP is typically found as a violet or pinkish macule or patch, and it can develop into a palpable mass with ulceration or bleeding. The standard treatment for DFSP is wide local excision of the tumor with a 2- to 3-cm negative margin, and radiation therapy or chemotherapy can be conducted with surgical treatment. A 35-year-old man had a palpable mass on the left side of his occipital scalp without color change, ulceration, or bleeding, which typically are present in malignancy. A magnetic resonance imaging (MRI) scan showed a 3-cm homogenous enhanced mass without adhesion between the scalp and the mass. Unexpectedly, a biopsy revealed the round mass to be DFSP. A wide excision and rotation of the scalp flap were performed. The patient recovered without any complications and received adjuvant radiotherapy at a dose of 60 Gray (Gy) for six weeks. There was no recurrence through six months of follow-up. Here we report this unique case of DFSP with atypical presentation.

Imaging Features of Various Benign and Malignant Tumors and Tumorlike Conditions of the Pleura: A Pictorial Review (흉막의 여러 가지 양성 및 악성 종양 혹은 종양 같은 질환들의 영상 소견: 임상 화보)

  • June Young Bae;Yookyung Kim;Hyun Ji Kang;Hyeyoung Kwon;Sung Shine Shim
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.5
    • /
    • pp.1109-1120
    • /
    • 2020
  • Pleural masses may be caused by various conditions, including benign and malignant neoplasms and non-neoplastic tumorlike conditions. Primary pleural neoplasms include solitary fibrous tumor, malignant mesothelioma, and primary pleural non-Hodgkin's lymphoma. Metastatic disease is the most common neoplasm of the pleura and may uncommonly occur in patients with hematologic malignancy, including lymphoma, leukemia, and multiple myeloma. Pleural effusion is usually associated with pleural malignancy. Rarely, pleural malignancy may arise from chronic empyema, and the most common cell type is non-Hodgkin's lymphoma (pyothorax-associated lymphoma). Non-neoplastic pleural masses may be observed in several benign conditions, including tuberculosis, pleural plaques caused by asbestos exposure, and pleural loose body. Herein, we present a review of benign and malignant pleural neoplasms and tumorlike conditions with illustrations of their computed tomographic images.

The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer

  • Luyi Cheng;TianshuoYang;Jun Zhang;Feng Gao;Lingyun Yang;Weijing Tao
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.574-589
    • /
    • 2023
  • Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.