DOI QR코드

DOI QR Code

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Kyu-Won Kang (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Woo-Keyoung Kim (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Sook Yang (CUSMEDI Co., Ltd.) ;
  • Byung-Jae Kang (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
  • Received : 2023.09.27
  • Accepted : 2023.11.28
  • Published : 2024.01.31

Abstract

Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.

Keywords

Acknowledgement

We thank CUSMEDI Co., Ltd. for providing implants for this study.

References

  1. Dewey CW. Myelopathies: disorders of the spinal cord. In: Dewey CW, Costa RC, editors. Practical Guide to Canine and Feline Neurology. 3rd ed. Singapore: Wiley; 2016, 329-403.
  2. Luttgen PJ, Braund KG, Brawner WR Jr, Vandevelde M. A retrospective study of twenty-nine spinal tumours in the dog and cat. J Small Anim Pract. 1980;21(4):213-226. https://doi.org/10.1111/j.1748-5827.1980.tb01238.x
  3. Heyman SJ, Diefenderfer DL, Goldschmidt MH, Newton CD. Canine axial skeletal osteosarcoma. A retrospective study of 116 cases (1986 to 1989). Vet Surg. 1992;21(4):304-310. https://doi.org/10.1111/j.1532-950X.1992.tb00069.x
  4. Vail D. Tumors of the nervous system. In: Vail D, Douglas T, Julias L, editors. Withrow and MacEwen's Small Animal Clinical Oncology. 6th ed. Saint Louis: Elsevier Saunders; 2020, 657-674.
  5. Stephen DG. Neuro-oncological surgery of the vertebral column and spinal cord. In: Slatter D, editor. Textbook of Small Animal Surgery. 3rd ed. Philadelphia: Elsevier Saunders; 2003, 1277-1286.
  6. Dernell WS, Van Vechten BJ, Straw RC, LaRue SM, Powers BE, Withrow SJ. Outcome following treatment of vertebral tumors in 20 dogs (1986-1995). J Am Anim Hosp Assoc. 2000;36(3):245-251. https://doi.org/10.5326/15473317-36-3-245
  7. Chauvet AE, Hogge GS, Sandin JA, Lipsitz D. Vertebrectomy, bone allograft fusion, and antitumor vaccination for the treatment of vertebral fibrosarcoma in a dog. Vet Surg. 1999;28(6):480-488. https://doi.org/10.1111/j.1532-950X.1999.00480.x
  8. Nakata K, Miura H, Sakai H, Mori T, Shibata S, Nishida H, et al. Vertebral replacement for the treatment of vertebral osteosarcoma in a cat. J Vet Med Sci. 2017;79(6):999-1002. https://doi.org/10.1292/jvms.17-0142
  9. Liptak JM, Veytsman S, Kerr S, Klasen J. Multiple segment total en bloc vertebrectomy and chest wall resection in a dog with an invasive myxosarcoma. Vet Rec Case Rep. 2020;8(2):e001033.
  10. Beal MW, Paglia DT, Griffin GM, Hughes D, King LG. Ventilatory failure, ventilator management, and outcome in dogs with cervical spinal disorders: 14 cases (1991-1999). J Am Vet Med Assoc. 2001;218(10):1598-1602. https://doi.org/10.2460/javma.2001.218.1598
  11. Kube S, Owen T, Hanson S. Severe respiratory compromise secondary to cervical disk herniation in two dogs. J Am Anim Hosp Assoc. 2003;39(6):513-517. https://doi.org/10.5326/0390513
  12. Cohen ZR, Fourney DR, Marco RA, Rhines LD, Gokaslan ZL. Total cervical spondylectomy for primary osteogenic sarcoma. Case report and description of operative technique. J Neurosurg 2002;97(3 Suppl):386-392. PUBMED https://doi.org/10.3171/spi.2002.97.3.0386
  13. Rhines LD, Fourney DR, Siadati A, Suk I, Gokaslan ZL. En bloc resection of multilevel cervical chordoma with C-2 involvement. Case report and description of operative technique. J Neurosurg Spine. 2005;2(2):199-205. https://doi.org/10.3171/spi.2005.2.2.0199
  14. Wang X, Eichbaum E, Jian F, Chou D. Two-stage en bloc resection of multilevel cervical chordomas with vertebral artery preservation: operative technique. Oper Neurosurg (Hagerstown). 2018;14(5):538-545. https://doi.org/10.1093/ons/opx178
  15. Kouno S, Tanoue H, Shimada M, Hara Y. Aggressive piecemeal excision and cervical bridging fixation for cervical vertebral osteosarcoma in two dogs and two cats. Vet Rec Case Rep. 2022;10(4):e431.
  16. Amelot A, Colman M, Loret JE. Vertebral body replacement using patient-specific three-dimensionalprinted polymer implants in cervical spondylotic myelopathy: an encouraging preliminary report. Spine J. 2018;18(5):892-899. https://doi.org/10.1016/j.spinee.2018.01.019
  17. Costanzo R, Ferini G, Brunasso L, Bonosi L, Porzio M, Benigno UE, et al. The role of 3D-printed custommade vertebral body implants in the treatment of spinal tumors: a systematic review. Life (Basel). 2022;12(4):489.
  18. Wei F, Li Z, Liu Z, Liu X, Jiang L, Yu M, et al. Upper cervical spine reconstruction using customized 3D-printed vertebral body in 9 patients with primary tumors involving C2. Ann Transl Med. 2020;8(6):332.
  19. Lu T, Liu C, Yang B, Liu J, Zhang F, Wang D, et al. Single-level anterior cervical corpectomy and fusion using a new 3D-printed anatomy-adaptive titanium mesh cage for treatment of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: a retrospective case series study. Med Sci Monit. 2017;23:3105-3114. https://doi.org/10.12659/MSM.901993
  20. Fang T, Zhang M, Yan J, Zhao J, Pan W, Wang X, et al. Comparative analysis of 3D-printed artificial vertebral body versus titanium mesh cage in repairing bone defects following single-level anterior cervical corpectomy and fusion. Med Sci Monit. 2021;27:e928022.
  21. Disch AC, Luzzati A, Melcher I, Schaser KD, Feraboli F, Schmoelz W. Three-dimensional stiffness in a thoracolumbar en-bloc spondylectomy model: a biomechanical in vitro study. Clin Biomech (Bristol, Avon). 2007;22(9):957-964. https://doi.org/10.1016/j.clinbiomech.2007.07.010
  22. Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J. 1998;7(2):148-154. https://doi.org/10.1007/s005860050045
  23. Tan JS, Bailey CS, Dvorak MF, Fisher CG, Oxland TR. Interbody device shape and size are important to strengthen the vertebra-implant interface. Spine (Phila Pa 1976). 2005;30(6):638-644. https://doi.org/10.1097/01.brs.0000155419.24198.35
  24. Chang UK. Total spondylectomy for subaxial cervical spine tumors. In: Kim S, Bilsky M, editors. Tumors of the Spine. Philadelphia: Elsevier Saunders; 2008, 424-431.
  25. Hettlich B. Vertebral fracture and luxation repair. In: Shores A, Brisson BA, editors. Current Techniques in Canine and Feline Neurosurgery. Hoboken: John Wiley & Sons; 2017, 209-221.
  26. Maritato KC. The Liberty Lock System. In: Barnhart MD, Maritato KC, editors. Locking Plates in Veterinary Orthopedics. Hoboken: John Wiley & Sons; 2018, 83-86.
  27. Seo E, Choi J, Choi M, Yoon J. Computed tomographic evaluation of cervical vertebral canal and spinal cord morphometry in normal dogs. J Vet Sci. 2014;15(2):187-193. https://doi.org/10.4142/jvs.2014.15.2.187
  28. Elford JH, Oxley B, Behr S. Accuracy of placement of pedicle screws in the thoracolumbar spine of dogs with spinal deformities with three-dimensionally printed patient-specific drill guides. Vet Surg. 2020;49(2):347-353. https://doi.org/10.1111/vsu.13333
  29. Guevar J, Bleedorn J, Cullum T, Hetzel S, Zlotnick J, Mariani CL. Accuracy and safety of threedimensionally printed animal-specific drill guides for thoracolumbar vertebral column instrumentation in dogs: bilateral and unilateral designs. Vet Surg. 2021;50(2):336-344. https://doi.org/10.1111/vsu.13558
  30. Hamilton-Bennett SE, Oxley B, Behr S. Accuracy of a patient-specific 3D printed drill guide for placement of cervical transpedicular screws. Vet Surg. 2018;47(2):236-242. https://doi.org/10.1111/vsu.12734
  31. Agnello KA, Kapatkin AS, Garcia TC, Hayashi K, Welihozkiy AT, Stover SM. Intervertebral biomechanics of locking compression plate monocortical fixation of the canine cervical spine. Vet Surg. 2010;39(8):991-1000. https://doi.org/10.1111/j.1532-950X.2010.00755.x
  32. Fujioka T, Nakata K, Nishida H, Sugawara T, Konno N, Maeda S, et al. A novel patient-specific drill guide template for stabilization of thoracolumbar vertebrae of dogs: cadaveric study and clinical cases. Vet Surg. 2019;48(3):336-342. https://doi.org/10.1111/vsu.13140
  33. Mariani CL, Zlotnick JA, Harrysson O, Marcellin-Little DJ, Malinak K, Gavitt A, et al. Accuracy of three-dimensionally printed animal-specific drill guides for implant placement in canine thoracic vertebrae: a cadaveric study. Vet Surg. 2021;50(2):294-302. https://doi.org/10.1111/vsu.13557
  34. Johnson JA, da Costa RC, Bhattacharya S, Goel V, Allen MJ. Kinematic motion patterns of the cranial and caudal canine cervical spine. Vet Surg. 2011;40(6):720-727. https://doi.org/10.1111/j.1532-950X.2011.00853.x
  35. Schollhorn B, Burki A, Stahl C, Howard J, Forterre F. Comparison of the biomechanical properties of a ventral cervical intervertebral anchored fusion device with locking plate fixation applied to cadaveric canine cervical spines. Vet Surg. 2013;42(7):825-831. https://doi.org/10.1111/j.1532-950X.2013.12044.x
  36. Mobbs RJ, Choy WJ, Wilson P, McEvoy A, Phan K, Parr WC. L5 en-bloc vertebrectomy with customized reconstructive implant: comparison of patient-specific versus off-the-shelf implant. World Neurosurg. 2018;112:94-100. https://doi.org/10.1016/j.wneu.2018.01.078
  37. Koehler CL, Stover SM, LeCouteur RA, Schulz KS, Hawkins DA. Effect of a ventral slot procedure and of smooth or positive-profile threaded pins with polymethylmethacrylate fixation on intervertebral biomechanics at treated and adjacent canine cervical vertebral motion units. Am J Vet Res. 2005;66(4):678-687. https://doi.org/10.2460/ajvr.2005.66.678
  38. Zindl C, Fitzpatrick N, Litsky AS, Allen MJ. Kinematics of a novel canine cervical fusion system. Vet Comp Orthop Traumatol. 2021;34(4):257-267. https://doi.org/10.1055/s-0041-1725016
  39. Breit S, Kunzel W. Shape and orientation of articular facets of cervical vertebrae (C3-C7) in dogs denoting axial rotational ability: an osteological study. Eur J Morphol. 2002;40(1):43-51. https://doi.org/10.1076/ejom.40.1.43.13953