• Title/Summary/Keyword: Tuff

Search Result 299, Processing Time 0.021 seconds

The Characteristics of Rock Weathering due to Freeze-Thawing - Focused on Rhyolite, Basalt, Tuff - (동결-융해작용에 따른 암석풍화의 특성 - 유문암, 현무암, 응회암을 중심으로 -)

  • Yang, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.47-65
    • /
    • 2018
  • Frost shattering has traditionally been considered as one of the most effective process in rock weathering. Each slab specimens of five or six rhyolite, basalt and tuff was prepared and put in freeze-thaw cycles and repeated 300 times in the temperature of $-25^{\circ}C$ to $+30^{\circ}C$ and their weathering patterns and products were analyzed by surface observation, particle size, XRD and thin section. As the result, some changes were observed in weathering patterns and weathering products. Rock shattering was more active in waterlogging rather than atmospheric conditions, but there are many differences depending on the type of rock. Rhyolite is hardly weathered by 300 times freeze-thaw cycles and generates the least amount of weathering products. Weathering of Basalt is limited to the surface layer where water can be absorbed, and produces a few amount of platy-shape debris. Tuff are separated by blocky structure which the particles are aggregated along their edges rather than enlarged existing cracks/joins or generated new joints.

Studies on the Sorption Characteristics of $^{90}Sr$ onto Granite and Tuff

  • Cho, Young-Hwan;Park, Chung-Kyun;Hahn, Pil-Soo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.393-398
    • /
    • 1997
  • Batch sorption experiments were carried out to investigate the sorption characteristics of $^{90}$ Sr onto domestic granite(HG) and tuff(TF) samples. The effect of three independent variables ([Sr], Vo1/Wt], [pH]) on the sorption was investigated. (Sr) played as the most significant variable for the $^{90}$ S $r^{2+}$ sorption onto HG, whereas [pH] had the greatest effect among three variables onto TF. Tuff shooed much greater sorption than granite, which ues accounted for their differences in mineralogical properties. The selectivity of $^{90}$ Sr was much lower than that of $^{l37}$Cs.s.s.

  • PDF

Evaluation of the Groundwater Flow in Rock Masses

  • Kim, Gye-Nam;Kim, Jae-Han;Ahn, Jong-Sung
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.1-9
    • /
    • 1992
  • The effects of fractures in rock masses on the groundwater flow and the groundwater flow system in the volcanic rocks are analyzed by GFFP-WT model, which allows more realistic analysis of groundwater system by considering the fractures in rock masses. The evaluation of the effects of fractures in rock masses on the groundwater flow has been carried out in the 2nd Yeonwha and resulted in that the fractures mostly influence flow time because of hydraulic head distribution change. The results of the groundwater flow system analysis in the volcanic rocks are as follows. Most of groundwater once flowed in Lapilli tuff flowed out through Lappilli tuff layer. But only a small fraction of water flowed out through crystal tuff layer.

  • PDF

Occurrence and Forming Process of the Reddish Bed at Hwangto Cave, Ulleung Island, Korea (울릉도 황토굴 적색층의 산출특징과 형성기작)

  • Woo, Hyeon Dong;Jang, Yun Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.239-254
    • /
    • 2016
  • The Hwangto cave is a sea cave which is located near shore in the Taeha-ri, Ulleung Island, being composed of the reddish tuff wall rock, the topic of this study, and the trachyte ceiling rock. The chemical compositions of the red tuff layer are 49.81-63.63% of $SiO_2$, 13.05-24.91% of $Al_2O_3$, 2.67-5.82% of $Fe_2O_3$, 2.87-6.92% of $Na_2O$, 2.37-3.85% of $K_2O$, 0.55-0.81% of $TiO_2$, 0-0.53% of MnO, 0.39-1.75% of MgO, and 0.60-1.40% of CaO with a pH ranging from 4.5 to 8. The reddish tuff are composed of 23.7-39.4% of anorthoclase, 16.9-33.3% of sanidine, 15.8-26.1% of illite, 5.1-9.0% of hematite, 0-3.7% of goethite, 6.9-9.9% of titanium oxide, and 0.9-9.5% of halite in mineral composition. Although it only includes anorthoclase, sanidine, and illite as major minerals, there can be additional vitric minerals that could not detected by the XRD. The mineralogy and textures of the tuff layer indicate that it became reddish due to the formation of amorphous palagonite and the oxidation of the iron as a heat from the trachytic lava affects the underlying tuff to altered. This iron oxides are enriched in the palagonite, or form microcrystalline or amorphous minerals. We thus suggest that the red tuff layer was generated by the combination of the thermal oxidation involved in the trachytic lava flow on the tuff layer, the palagonitization of the matrix of the tuff, and the oxidation of iron-bearing minerals.

SHRIMP U-Pb Dating and Volcanic Processes of the Volcanic Rocks in the Guamsan Caldera, Cheongsong, Korea (청송 구암산 칼데라 화산암류의 SHRIMP U-Pb 연령측정과 화산과정)

  • Hwang, Sang Koo;Jo, In Hwa;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.467-476
    • /
    • 2017
  • Volcanic rocks related to the Guamsan cadera, which find in the southeastern Cheongsong, are divided into Volcanic breccia, Guamsan Tuff and Post-collapse intrusions. We determined their eruption, intrusion and caldera-forming timings based on SHRIMP U-Pb zircon dating. The dating results yield earlier eruption age of $63.77{\pm}0.94Ma$ from the lower ash-flow tuff and an later eruption age of $60.1{\pm}1.8Ma$ from the upper ash-flow tuff of the Guamsam Tuff, and intrusion age of $60.65{\pm}0.95Ma$ from the rhyolite ring dyke of the Post-collapse intrusions. The age data suggest that the Guamsan caldera is formed in 60.65~60.1 Ma between eruption of the upper ash-flow tuff and intrusion of the rhyolite ring dyke. The Guamsan cadera exhibits the volcanic processes of a perfect igneous cycle passing from ash-flow eruptions through caldera collapse to ring intrusions during 63.77~60.1 Ma.

Type and Evolution of the Myeonbongsan Caldera in Southern Cheongsong, Korea (청송남부 면봉산 칼데라의 유형과 진화)

  • 황상구;김성규
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.171-182
    • /
    • 1999
  • The Myeonbongsan caldera, 10.2X8.0 km, developed within older sequences of sedimentary formations and intermediate composition volcanis in the southern Cheongsong area. Volcanic rocks in the caldera block include lower intermediate volcanics, middle tuffaceous sequences and upper silicic ones. The silicic volcanics, which is named Myeonbongsan Tuff, are composed of crystal-rich ash-flow tuff(300 m) , bedded tuff(30 m) and pumice-rich ash-flow tuff(700 m) in ascending order. Several intrusions dominate the early sequences within the caldera. The caldera collapsed in a trapdoor type when silicic ash-flow tuffs erupted fro major vent area in the caldera. Normal faulting along a ring fault system except the southwestern part dropped the tuffs down to the northrase with a maximum displacement of about 820 m. The Myeonbongsan Tuff is just about 1,030 m thick inside the northeastern caldera, with its base not exposed, and southwestward thinning down. Rhyolitic plug and ring dikes are emplaced along the central vent and the caldera margins, and the ring dikes are cut by plutonic stocks in the southeastern and northwestern parts. The caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which silicic magma was erupted to form the Myeonbongsan Tuff. Following the last ash-flow eruption, collapse of the chamber roof resulted in the formation of the Myeonbongsan caldera, a subcircular trapdoor-type depression subsiding about 820 m deep. After the collapse, stony to flow-banded rhyolites were emplaced as circular plugs and ring dikes along the central vent and the caldera margins respectively. Finally after the intrusions, another plutons were emplaced as stocks outside the caldera.

  • PDF

A Preliminary Study on Calculating Eruptive Volumes of Monogenetic Volcanoes and Volcanic Hazard Evaluation in Jeju Island (제주도 단성화산의 분화량 계산과 화산재해 평가에 대한 예비연구)

  • Ko, Bokyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • Eruptive volumes of three monogenetic volcanoes (Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone) with the youngest eruption age are calculated using the model, applied to Auckland Volcanic Field in New Zealand, to investigate the volcanic eruption scale and to evaluate volcanic hazard of Jeju Island. Calculated eruptive volumes of the volcanoes are $24,987,557m^3$, $9,652,025m^3$, and $11,911,534m^3$, respectively, and the volumes include crater infill, tuff ring (tuff cone), scoria cone, and lava flow. Volcanic explosivity indices of Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone are estimated based on the eruptive volumes to be 3, 2, and 3 respectively, and eruption type is Strombolian to Surtseyan. It is assumed that the amount of emitted sulfur dioxide gas is $2-8{\times}10^3kt/y$ according to the correlation between volcanic explosivity index and volcanic sulfur dioxide index. Recent age dating researches reveal evidences of several volcanic activities during the last 10,000 years indicating the possible volcanic eruption in Jeju Island in the near future. Therefore, it is necessary for appropriate researches regarding volcanic eruption of the island to be accomplished. In addition, establishment of the evaluation and preparation system for volcanic hazard based on the researches is required.

Modeling Study on Deterioration of Stone Monuments Constructed with Silicate Rock by Acid Rain (규산염질 암석으로 구성된 석조문화재의 산성비에 의한 손상 임상연구)

  • Do, Jin-Young;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • The artificial rains having different pH and weathering simulation test were performed for Gyeongju Namsan granite and dacitic tuff to predict the role of acid rain in the deterioration of stone monuments located in Gyeongju area. The pH 4.0 rain reacted with the fresh granite showed near neutral pH at the early stage due to the hydrolysis of minerals in the rock surface. But the pH changed back to the initial pH in the later stage. On the other hand, the pH 5.6 rain showed the neutral pH for a longer time than the experiment with pH 4.0 rain, reflecting slower reaction of minerals due to the weaker acidity. When the pH 5.6 rain reacted with the weathered granite, the water showed neutral pH longer than the case of the fresh granite. The similar tendencies were observed in the experiment of dacitic tuff, except that the pH 4.0 rain reacted with dacitic tuff took a longer time to go back to the initial pH as compared with the case of granite. These results may due to the differences in mineral composition and texture of two rocks. Dacitic tuff contains more fine-grained or glassy groundmass than granite and is more reactive with weaker acid rain. It was predicted that the weight loss and strength decrease rate of dacitic tuff would be approximatetly twice relative to those of granite in the same experimental environment.

Source Area of the Rocks Using the West Stone Pagoda of Gameunsaji Temple Site, Korea (감은사지삼층석탑(서탑)에 사용된 석재 공급지에 대한 연구)

  • Jwa, Yong-Joo;Kim, Kun-Ki;Ko, Seok-Bae;Kim, Jong-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.3 s.45
    • /
    • pp.128-138
    • /
    • 2006
  • The west stone pagoda of Gameunssji temple site (National Treasure No. 112) has been damaged mainly by fracture, exfoliation and granular disintegration. In this study, the source area of the rocks using the west stone pagoda was examined in terms of petrological feature, magnetic susceptibility, and ${\gamma}-ray$ spectrometer. The stones include abundant crystal fragments of biotite, quartz and feldspars in the fine-grained matrix; they are petrographically discriminated to vitric-crystal tuff or crystal tuff. Measured magnetic susceptibility values are of from 10 to 20 $({\times}10^{-3}\;SI\;unit)$. From the ${\gamma}-ray$ spectrometer measurement K, eU, and eTh contents of the stones are about 3%, 0 to 8ppm, and 9 to 18 ppm, respectively. These features are used as indicators to presume the source area of the stones. Comparing the petrographical and chemical characteristics between the stones of the west stone pagoda and the country rocks near the Gameunsaji temple site, it is suggested that the most similar country rock to the stones could be dacitic volcanic rocks of the Beomgokri group in the Waeup basin. The Beomgokri group is lithostratigraphically divided into Waeupri tuff, Yongdongri tuff and Beomgokri volcanic rocks. Among the three rocks, the crystal tuff of the Beomgokri volcanic rocks seems likely to have been the source rock of the stones of the west stone pagoda.

Material Characteristics and Deterioration Assessment for Multi-storied Round shape Stone Pagoda of Unjusa Temple, Hwasun, Korea (화순 운주사 원형다층석탑의 재질특성과 훼손도 평가)

  • Park, Sung Mi;Lee, Myeong Seong;Kim, Jae Hwan;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.86-101
    • /
    • 2012
  • The constituting rocks of Multi-storied Round shape stone Pagoda of Unjusa Temple are lithic tuff and rhyolite tuff breaccia which show green or grey and also rock fragment with poor roundness are present in the structure. lithic tuff is composed of feldspar and quartz which are glassy texture and cryptocrystalline and also micro crystalline are scattered. phenocryst quartz and feldspar in the substrate composed of feldspar and opaque minerals are found in rhyolite tuff breaccia. dust, exfoliation, cavity, fracture and crack are observed in all the stone of the pagoda and the result of Infrared Thermography shows partial inter cavities have developed severely which may cause further exfoliation. In addition, a great deal of various grey, green, and yellow brown lichen as well as bryophyte are present at the upper part of eastern and western roof stone located above the third floor. Discolors remarkably shown at stereobate and roof stone are identified as inorganic pollutants such as manganese oxide, iron oxide and iron hydroxide. The stone of the pagoda of the Chemical Index of Alteration (CIA) and the Weathering Potential Index (WPI) are 55.69 and 1.12 respectively and this corresponds to a highly weathered stage. The measured values, average ultrasonic velocity 2,892m/s, coefficient of weathering 0.4k and compressive strength $1,096kg/cm^3$, suggest that the rock strength and durability are weakened.