Browse > Article
http://dx.doi.org/10.9727/jmsk.2016.29.4.239

Occurrence and Forming Process of the Reddish Bed at Hwangto Cave, Ulleung Island, Korea  

Woo, Hyeon Dong (Department of Geology, Kyungpook National University)
Jang, Yun Deuk (Department of Geology, Kyungpook National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.29, no.4, 2016 , pp. 239-254 More about this Journal
Abstract
The Hwangto cave is a sea cave which is located near shore in the Taeha-ri, Ulleung Island, being composed of the reddish tuff wall rock, the topic of this study, and the trachyte ceiling rock. The chemical compositions of the red tuff layer are 49.81-63.63% of $SiO_2$, 13.05-24.91% of $Al_2O_3$, 2.67-5.82% of $Fe_2O_3$, 2.87-6.92% of $Na_2O$, 2.37-3.85% of $K_2O$, 0.55-0.81% of $TiO_2$, 0-0.53% of MnO, 0.39-1.75% of MgO, and 0.60-1.40% of CaO with a pH ranging from 4.5 to 8. The reddish tuff are composed of 23.7-39.4% of anorthoclase, 16.9-33.3% of sanidine, 15.8-26.1% of illite, 5.1-9.0% of hematite, 0-3.7% of goethite, 6.9-9.9% of titanium oxide, and 0.9-9.5% of halite in mineral composition. Although it only includes anorthoclase, sanidine, and illite as major minerals, there can be additional vitric minerals that could not detected by the XRD. The mineralogy and textures of the tuff layer indicate that it became reddish due to the formation of amorphous palagonite and the oxidation of the iron as a heat from the trachytic lava affects the underlying tuff to altered. This iron oxides are enriched in the palagonite, or form microcrystalline or amorphous minerals. We thus suggest that the red tuff layer was generated by the combination of the thermal oxidation involved in the trachytic lava flow on the tuff layer, the palagonitization of the matrix of the tuff, and the oxidation of iron-bearing minerals.
Keywords
Reddish tuff layer; Thermal oxidation; Palagonite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jakobsson, S. P. (1978) Environmental factors controlling the palagonitization of the Surtsey tephra, Iceland. Bull Geol. Soc. Den, 27, 91-105.
2 Jeong, G. Y. and Sohn, Y. K. (2009) Basaltic glass alteration and lithification of the Holocene Hamori Formation, Jeju Island. Jour. Geol. Soc. Korea, 45, 331-344.
3 Jercinovic, M. J., Keil, K., Smith, M. R., and Schmitt, R. A. (1990) Alteration of basaltic glasses from north-central British Columbia, Canada. Geochim Cosmochim Acta, 54, 2679-2696.   DOI
4 Kim, Y. K. and Lee, D. S. (1983) Petrology of Alkali Volcanic Rocks in Northern part of Ulrung Island, Journal of Korean Institute of Mining Geology, 16, 19-36.
5 Lee, D. S. (1954) Geology of the Ulleung Island, Collected papers in Nature science, Seoul National University, 1, 199-207.
6 Lutze, W., Malow, G., Ewing, R. C., Jercinovic, M. J., and Keil, K. (1985) Alteration of basalt glasses: implications for modelling the long-term stability of nuclear waste glasses. Nature, 314, 252-255.   DOI
7 Maynard, J. B. (1976) The long-term buffering of the oceans. Geochim Cosmochim Acta, 40, 1423-1532.   DOI
8 Min, K. D., Kim, O. J., Yun, S., Lee, D. S., and Kim, K. H. (1988) Applicability of Plate Tectonics to the Post-Late Cretaceous Igneous Activity and Mineralization in the Southern Part of South Korea (II). Jour. Geol. Soc. Korea, 22, 11-40.
9 Peacock, M. A. (1926) The petrology of Iceland, part 1. The basic tuffs. R Soc Edinb Trans, 55, 53-76.
10 Peacock, M. A. and Fuller, R. E., 1928, Chlorophaeite, sideromelane and palagonite from the Columbia River Plateau. Am Mineral, 13, 360-383.
11 Schmincke, H.-U. (2004) Volcanism. Berlin and Heidelberg: Springer. 131p.
12 Singer, A. and Banin, A. (1990) Characteristics and mode of formation of palagonite - A review. in proc. 9th Int. Clay Conf., Strasbourg, 1989. Farmer, V. C. and Tardy, Y., eds Sci. Gwol., Mwm. 88, 173-181.
13 Staudigel, H. and Hart, S. R. (1983) Alteration of basaltic glass: mechanisms and significance for the oceanic crust-sea water budget. Geochim Cosmochim Acta, 47, 337-350.   DOI
14 Stroncik, N. A. and Schmincke H.-U. (2001) The evolution of palagonic crystallisation, chemical changes and element budget, Geochem Geophys Geosystems 2.
15 Stroncik, N. A. and Schmincke H.-U. (2002) Palagonite: a review. Int. J. Earth Sci., 91, 680-697.   DOI
16 Won, J. K. and Lee, M. W. (1984) The Volcanism and Petrology of alkali Volcanic rocks, Ulrung Island. Jour. Geol. Soc. Korea, 20, 296-305.
17 Thorseth, I. H., Furnes, H., and Tumyr, O. (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta, 55, 731-749.   DOI
18 Walton, A. W. and Schiffman P. (2003) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core1. Description and paragenesis, Geochem Geophys Geosystems.
19 Winter, J. (1989) Chemical Compositions of the Korean Ancient Pigment, 43, 1-36.
20 Zhou, Z. H., Fyfe, W. S., Tazaki, K., and Vandergaast, S. J. (1992) The structural characteristics of palagonite from DSDP Site-335. Can Mineral, 30, 75-81.
21 Correns, C. (1930) Uber einen basalt vom bode des atantischen Ozeans und senine Zersetzungsrinde. Chem Erd, 5, 76-86.
22 Berkgaut, V., Singer, A., and Stahr, K. (1994) Palagonite reconsidered: paracrystalline illite-smectite from regoliths on basic pyroclastics. Clay and Clay Minerals, 42, 582-592.   DOI
23 Choo, C. O. (2001) Mineralogical characteristics of Illite and its application. Jour. Miner. Soc. Korea, 14, 29-37.
24 Coombs, D. S. (1954) The nature and alteration of some triassic sediments from Southland, New Zealand. Royal soc. New Zwaland Trans., 82, 65-109.
25 Do, J. Y., Kim, S. J., Lee, S. J., Ahn, B. C. Yun, S. C. and Kim, K. J. (2009) A Study on Functionality of the Ulreungdo Seokganju as Korean Traditional Red Pigment. Journal of Mineralogical Society of Korea, 22, 153-162.
26 Drief, A. and Schiffman, P. (2004) Very Low-Temperature Alteration of Sideromelane in Hyaloclastites and Hyalotuffs from Kilauea and Maunakea Volcanics: Implications for the Machanism of Palagonite Formation. Department of Geology, University of California, Davis, California, 52(5), 622-634.   DOI
27 Eberl, D. D. and Srodon, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Miner., 73, 1335-1345.
28 Furnes, H. (1975) Experimental palagonitization of basaltic glasses of varied composition. Contrib Mineral Petrol, 50, 105-113.   DOI
29 Eggleton, R. A. and Keller, J. (1982) The palagonitization of limburgite glass - a TEM study. Neues Jahrb Miner, 7, 321-336.
30 Fisher, R. V. and Schmincke, H.-U. (1984) Alteration of oceanic volcanic glass: textural evidence of microbial. Science, 281, 978-980.
31 Furnes, H. (1984) Chemical-changes during progressive subaerail palagonitization of a subglacial olivine tholeiite hyaloclastite - a microprobe study. Chem Geol, 43, 271-285.   DOI
32 Gadanyi, P. (2008) Sea cave development in an alternating sequence of nearly horizontal basaltic hyaloclastite-and compact lava layers in Dyrholaey, Iceland - Cadernos do Laboratorio Xeoloxico de Laxe, 50, 155-165.
33 Gwak, D. H. (2002) The traditional multicolored paintwork on wooden buildings in Korea, Hakyeon publication, 514p.
34 Hay, R. L. (1966) Zeolites and Zeolitic Reactions in Sedimentary Rocks. Geol. Soc. Amer. Spec. Paper, 85, 130.
35 Hay R. L. and Iijima A. (1968) Nature and origin of palagonite tuffs of the Honolulu Group on Oahu, Hawaii. In: Studies in volcanology - a memoir in honor of Howel Williams. Geological Society of America, Boulder, 331-376p.
36 Iijima, S. and Utada, M. (1972) A critical revew on the occurrence of zeolites in sedimentary rocks in Japan Jour. Geol. Geogr., 42, 61-83.
37 Inoue, A., Velde, B., Meunier, A., and Touchard, G. (1988) Mechanism of illite transformation during smectite-to-illite conversion in a hydrothermal system, Am. Miner. 73, 1325-1334.
38 Jakobsson, S. P. (1972) On the consolidation and palagonitization of the tephra of the Surtsey volcanic island, Iceland. Surtsey Research Progress Report, 6, 121-128.