• Title/Summary/Keyword: Tubular

Search Result 1,897, Processing Time 0.029 seconds

One-Ampere Conductor Method for Tubular Linear Induction Motor for Size Reduction of Primary Iron Core

  • Lee, Byeong-Hwa;Kim, Kyu-Seob;Kwon, Soon-O;Sun, Tao;Hong, Jung-Pyo;Lee, Jung-Ho
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • This paper presents size reduction of primary iron core for tubular linear induction motor by improved winding configuration. Using one-ampere conductor method, magnetic field analysis of tubular linear induction motor for size reduction is conducted. Size reduction and improvement of air gap flux distribution is achieved by improved winding configuration, and analysis results are verified by finite element analysis (FEA) and experiments.

A Study on Heat Flux Characteristics of Tubular Quartz Lamp for Thermal Load Design of High Temperature Structural Test (석영 가열램프의 열 유속 특성 파악을 통한 고온 구조시험의 열 하중 설계에 관한 연구)

  • Kim, Junhyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2022
  • Development of supersonic flying vehicle is one of the most latest issue in modern military technology. Specifically, structural integrity of supersonic flying vehicle can be verified by high temperature structural test. High temperature structural test is required to consider thermal load caused by aerodynamic heating while applying structural load simultaneously. Tubular quartz lamps are generally used to generate thermal load by emitting infrared radiation. In this study, modified heat flux model of tubular quartz lamp is proposed based on existing model. Parameters of the proposed model are optimized upon measured heat flux in three dimensions. Finally, thermal load of plate specimen is designed by the heat flux model. In conclusion, it is possible to predict heat flux applied on plate specimen and desired thermal load of high temperature structural test can be obtained.

On the Gauss Map of Tubular Surfaces in Pseudo Galilean 3-Space

  • Tuncer, Yilmaz;Karacan, Murat Kemal;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.497-507
    • /
    • 2022
  • In this study, we define tubular surfaces in Pseudo Galilean 3-space as type-1 or type-2. Using the X(s, t) position vectors of the surfaces and G(s, t) Gaussian transformations, we obtain equations for the two types of tubular surfaces that satisfy the conditions ∆X(s, t) = 0, ∆X(s, t) = AX(s, t), ∆X(s, t) = λX(s, t), ∆X(s, t) = ∆G(s, t), ∆G(s, t) = 0, ∆G(s, t) = AG(s, t) and ∆G(s, t) = λG(s, t).

The Shape Operator of the Tubular Hypersurfaces

  • Cho, Bong-Sik
    • Journal for History of Mathematics
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 1998
  • Using Fermi coordinates and the principle curvature on the tubula hypersurfaces, we characterize space of constant sectional curvature by analysing the shape operator on the tubular hypersurfaces.

  • PDF

Operating Characteristics of Advanced 500W class Anode-supported Flat Tubular SOFC stack in KIER (500W 급 연료극 지지체 평관형 고체산화물연료전지 스택의 운전 특성)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2007.11a
    • /
    • pp.193-198
    • /
    • 2007
  • KIER has been developing the anode supported flat tubular SOFC stack for the intermediate temperature $(700{\sim}800^{\circ}C)$ operation. for this purpose, we have first fabricated anode supported flat tubular cells by the optimization between the current collecting method and the induction brazing process. After that we designed the compact fuel & air manifold by adopting the simulation technique to uniformly supply fuel & air gas and the unique seal & insulation method to make the more compact stack. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90cm^2$ of connected in series with 12 modules, in which one module consists of two cells connected in parallel. The performance of stack in 3 % humidified $H_2$ and air at $800^{\circ}C$ shows maximum power of 507 W. Through these experiments, we obtained basic & advanced technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular SOFC stack in KIER.

  • PDF

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties (Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성)

  • Kim, Bo-Young;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

FATIGUE DESIGN OF BUTT-WELDED TUBULAR JOINTS

  • Kim, D. S.;S. Nho;F. Kopp
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.127-132
    • /
    • 2002
  • Recent deepwater offshore structures in Gulf of Mexico utilize butt welded tubular joints. Application of welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical because the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimating the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves specified in the codes and standards. Applying the stress concentration factor of the welded structure to S-N approach often results in very conservative assessment because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fracture mechanics and fitness for service (FFS) technology have been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves to be used and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. An attempt was made to develop set of S-N curves based on fracture mechanics approach by considering non-uniform stress distribution and a threshold stress intensity factor. Series of S-N curves generated from this approach were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02"). Similar comparison with API X′ was made for tubular joint.. These initial crack depths are larger than the limits of inspection by current Non-destructive examination (NDE) means, such as Automatic Ultrasonic Inspection (AUT). Thus a safe approach can be taken by specifying acceptance criteria that are close to limits of sizing capability of the selected NDE method. The comparison illustrates conservatism built into the S-N design curve.

  • PDF

Expression of Tubular Intercellular Adhesion Molecule-1 (ICAM -1) as a Marker of Renal Injury in Children with IgA Nephropathy (소아 특발성 IgA 신병증에서 신 손상의 예후 인자로서 신세뇨관 ICAM-1의 발현)

  • Son Young-Ho;Kang Mi-Seon;Chung Woo-Yeong
    • Childhood Kidney Diseases
    • /
    • v.8 no.2
    • /
    • pp.149-158
    • /
    • 2004
  • Purpose : In order to evaluate the value of the renal expression of ICAM-1 as a marker of renal injury, we analyzed the relationship between abnormal tubular expression of ICAM-1 and histopathological features and clinical manifestations in children with IgA nephropathy (IgAN). Methods: The clinical data from 43 patients with IgAN were analyzed retrospectively and compared to the histopathologic subclassification proposed by Haas. ICAM-1 in tubular epithelium was assessed using the LSAB(Labeled streptavidine biotin) kit on the renal biopsy specimens. Results: In 43 patients with primary IgAN, 28 males and 15 females aged $12.2{\pm}2.2$ years were studied. There were no differences of renal tubular expression of ICAM-1 between patients with gross hematuria and without gross hematuria. But renal tubular expression of ICAM-1 in patients with proteinuria was significantly higher than that of in patients without proteinuria($78.2{\pm}14.19%\;vs\;55.8{\pm}32.20%,\;P<0.05$). Renal tubular expression of ICAM-1 was also associated with the severity of histopathological degree using Haas classification method. In subclass I, renal tubular expression of ICAM-1 was significantly lower than those of other subclasses. A significant correlation was found between the tubular expression of ICAM-1 and the total amount of protein in 24 hour collected urine$(r_s=0.47236,\;p<0.05)$. But there were no significant correlations between the renal tubular expression of ICAM-1 and interstitial cellular infiltration, tubular atrophy, and interstitial fibrosis respectively(F=0.89, P>0.05; F=0.31, p>0.05; F=0.21, p>0.05). Conclusion: Renal tubular expression of ICAM-1 can be a useful marker of renal injury in children with IgAN. (J Korean Soc Pediatr Nephrol 2004;8:149-158)

  • PDF