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The Shape Operator of the Tubular
Hypersurfaces=*

Wonkwang University Bong-Sik Cho

Abstract

Using Fermi coordinates and the principle curvature on the tubula hypersurfaces, we
characterize space of constant sectional curvature by analysing the shape operator on
the tubular hypersurfaces.

0. Historical Background and Introduction

In 1992 Fermi [1] introduced Fermi coordinates to describe the geometry of a
Riemannian manifold in a neighborhood of a curve. He wrote this paper while a student
at the Scuola Normale di Pisa and later became more famous as a physicist.

It was soon utilized by Levi-Civita, Eisenhart and other differential geometers in the
1920’s.

Normal coordinates are the natural coordinates to use in the study of a geodesic ball,
which is a simple but important special case of a tube. Fermi coordinates are a
generalization of normal coordinates. It turns out that many facts about normal
coordinates have generalization to Fermi coordinates.

Thus we are concerned with the geometry of tubes using Fermi coordinates.

In this paper we deal with the tubular hypersurfaces P, in the Riemannian manifold

M and study how the properties of P, on M determine the ambient space.

In 1995, B.J. Papantoniou [5] proved the Theorem 3.2 by means of the Jacobi vector
fields. It is the problem about the principle curvatures of the tubula hypersurfaces about
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every topologically embedded submanifold P of M provided that the shape operator
S(#) of P, has a parallel eigenspaces of dimension #—g—1 along a geodesic &
ineeting P orthogonally. v

However we use a Riccati differential equation (Lemma 2.3) instead of the Jacobi

differential equation because it has more geometric content and gives direct information
about the principal curvatures of the tubular hypersurfaces.

1. Tubular Hypersurfaces

Basic notions and facts used here can be founded in the paper [2].

In this paper we assume that all maps and manifolds are C”.

Let M be a Riemannian manifold of dimension # with the Levi-Civita connection ¥
and the curvature tensor R, which is defined by

Rxy=[Vyx, Vyl—Vix 1 for X,Ye M.

let P be a g-dimensional connected topologically embedded submanifold of M.
Denote by v the normal bundle of P in M. Then exp,:v — M, which is given by
exp ((p, v)) =exp v) for p€P and v<P,, maps on a neighborhood £p of the
zero section of v diffeormorphically.

Let p=P and let E,+, -, E, be orthonormal sections of v defined in a
neighborhood VCP of p. Let (y;, .-,¥,) be an arbitrary system of coordinates for
Pin M.

Definition 1.1. The Fermi coordinates (x;, ...,%,) of PCM centered at p in
exp (Lp) are defined by

xolexp (2 HE()=2a(9),  a=1,-.a.

xi{exp ( j§+lt;Ef(1>'))= ti, i=q+1, ..., n.
for p'=V, provided that the numbers f£,.y,--.,%, are small enough so that
‘§+1tjE;‘(p’)E.Qp.
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With respect to the Fermi coordinates (%, ..., x,) for PCM we put

N= 3 B O 2 3

i=7r1 0 Ox;’ iZgr1
Then for any unit speed geodesic £ normal to P and me M,
o(m) = d(m, P) Newy =€°(9).
Therefore ¢ is defined on exp (2p) and N is defined on exp (£2p) — P.

Definition 1.2. A tube T(P, #) of radius =0 about P is the set
nPn=y

Ufexp () | v=Py, I ol <7}

={m e M| there exist a geodesic & of length L(§)<7~r
from m meeting P orthogonally }

We call a hypersurface of the form
P,={meT(P, »)| dim, P)=t}

the tubular hypersurface at a distance ¢ from P.

We use S and Ry for the tensor field defined on the set exp (£2p) —P by
RyU=RyyN , SU=—VyN
for U < x (exp (R2p) — P).

Lemma 1.3.[31 On exp (2p) — P,
vnS = S2+Ry.

For each ¢ let S(9,R(H and S’({) be the restrictions to the hypersurface P, of
S, Ry and V,§S.
Then S(# is the shape operator of P; and S’'()=S*#+ R(D.

2. Main Result

Let & be a unit speed geodesic normal to P at p with £(0)=p and let
{fi, -, f;} be an orthonormal basis of P, that diagonalizes the shape operator of P
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at p. We extend these tangent vectors {E;, .., E,} to unit vector fields
Fi(®, .., F(® along & such that each ¢ and @, F,(f) is an eigenvector of S(%).
We put
S(OF () = ko (DF (B , a=1,-.,4q.
Then the ku(f) are eigenvalues of P;. Let k,i5(8, -, k(8 be the remaining eigenval
ues. Then there are unit vector fields F,.5(#, .-, F,(f) along & such that
S(OF{t)= ki (DF;(1), i=q+2,..,n
If Foei(d= &' (H=Ng¢(, then {F,, Fy, ..., F,} is an orthonormal frame field along
€ for M. For fixed £, ky(D, -, kD), ky2(8), -, ky(t) which are restricted to P,

are the eigenvalues of P; at & (P.

Lemma 2.1.[3] Suppose F, is differentiable at f. Then

ko' ()= kAD+ R ¢ orve 0FLD a=1,..,a,9+2, ..., n.

Theorem 2.2. Let P be a g-dimensional submanifold of a connected #-dimensional
Riemannian manifold M.

If the shape operator S(# of the tubular hypersurface P, has (n—g—1)
dimensional parallel eigenspace along the unit speed geodesic £ of M meeting P
orthogonally, then M has constant curvature.

Proof. Let £ be the unit $peed geodesic normal to P at p with &(Q0)=p5. Let
ki="Fk,(H and ky,=k,(# be the distinct eigenfunctions of multiplicity ¢ and z—qg—1
of the shape operator S(#) for P;.

Let {Fy(D, Fy(P, ..., F,(8)} be the parallel orthonormal frame field along &,
obtained by parallel translation of orthonormal basis {E,, .-, E,} of M, such that

S(OF (D =k (DF (1), a=1,..,q
S(OF{ )= ky (OF (1), i=q+2,..,n
For(=€(8.
By Lemma 1.3
(S (= SE())F.()=RnFD a=1, -, q,q+1, -, n.
Hence
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(k' (D~ B (DF,(D=R(& ,FDE, a=1,..,q
(k' (D~ B(O)F;()=R(& ,F()E, i=q+2,..,n.

Thus F,(#) and F{# are eigenvectors of the mapping R(&, )N along &—p
with eigenvalues k' () —k; (9 of multiplicity ¢ and k() — k() of multiplicity
n—q—1.

At t=0, we have

R(E;11,E)E; 1=k (E; 1 EDE, a=1,..,q
R(E,1,E)E,;1,=Fk (E,1,E)E, i=q+2, .., 0.
Since k doesn’t depend on the choice of E,, % is constant on M by Schur’s

theorem:.
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