• Title/Summary/Keyword: Tube-to-tube conduction

Search Result 68, Processing Time 0.025 seconds

A Study on the Characteristics of Evaporative Heat Transfer for Carbon Dioxide in a Horizontal Tube (수평원관 내 이산화탄소의 증발열전달 특성 연구)

  • Cho, E.S.;Yoon, S.H.;Kim, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.104-107
    • /
    • 2000
  • Evaporative heat transfer characteristics of carbon dioxide has been investigated. Experiment has been carried out for seamless stainless steel tube with outer diameter of 9.55 mm and inner diameter of 7.75 mm. Direct heating method is used for supplying heat to the refrigerant was uniformly heated by electric current which was applied to the tube wall. The saturation temperature of refrigerant is calculated from the measured saturation pressure by using an equation of state. Inner wall temperature was calculated from measured outer wall temperature, accounting for heat generation in the tube and heat conduction through the tube wall. Mass Quality of refrigerant was calculated by considering energy balance in the preheater and the test section. Heat fluxes were set at 12, 16, 20, 23, and $27kW/m^2$, mass fluxes were controlled at 212, 318, 424, and $530 kg/m^2s$, and saturation temperature of refrigerant were adjusted at 0, 3.4, 6.7 and $10.5^{\circ}C$. From this study, heat transfer coefficients of carbon dioxide have been provided with respect to quality for several mass fluxes, heat fluxes. Finally, the experimental results in this study are compared with the correaltion by Gungor and Winterton(1987).

  • PDF

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.

Development of a Computer Program for Thermal Sizing of a Copper Bonded Steam Generator (구리밀봉 증기발생기의 열적크기 계산을 위한 프로그램 개발)

  • 김의광;김연식;어재혁;김성오;백병준
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.84-92
    • /
    • 2003
  • A one-dimensional thermal-hydraulic analysis computer program is developed for thermal sizing of a copper bonded steam generator. It is assumed that the conduction heat transfer of copper region between the hot side and the cold side tube is one-dimensional and its thermal resistance is derived as a function of a tube pitch. The flow regions of the water/steam side are divided into four regions: subcooled, saturated, film boiling, and super-heated. The number of tube selected ranges from 250 to 3500 and the pitch to tube diameter (P/D) ratios are 1.4, 1.6 and 1.8 for the parametric study calculation. The calculation results showed that when the number of tube was 2500, the length of the heating tube was about 12 m and the outside diameter of the steam generator was about 3 m. If the P/D ratio increases, the thermal resistance of copper component also increases, however the length of the heating tube is not so much increased.

The Availability of Gore-Tex® Tube as Nerve Conduit at the Peripheral Nerve Defect (말초신경 결손시 신경도관으로서 Gore-Tex® 도관의 유용성)

  • Lee, Ki Ho;Oh, Sang Ha;Lee, Seung Ryul;Kang, Nak Heon
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.613-618
    • /
    • 2005
  • When a large peripheral nerve defect occurs, an autologous nerve graft is the most ideal method of recinstruction. But an autologous nerve graft has many limitations due to donor site morbidities. Many previous focused on finding the ideal nerve conduit. Among them, $Gore-Tex^{(R)}$ has several advantages over other conduits. It can be manipulated to a suitable size, does not collapse easily, and it is a semi- permeable material that contain pores. A round shaped nerve can be newly formed because of its smooth inner surface. The purpose of this study was to evaluate the availability of $Gore-Tex^{(R)}$ tube as a nerve conduit at the peripheral nerve defect in the rat sciatic nerve. The 10 mm nerve gap was made in each group. A $Gore-Tex^{(R)}$ tube filled with skeletal muscle was inserted and autologous nerve graft was harvested, respectively. In the experimental group, we placed a 0.5 mm thickness, $30{\mu}m$ pored, 1.8 mm in diameter and 14 mm length tube with skeletal muscle inserted inside. In the control group, the nerve gap was inserted with a rat sciatic nerve. We estimated the results electrophysiologically and histologically to 16 weeks postoperatively. Results in the nerve conduction velocity, total myelinated axon count, myelin sheath thickness and mean nerve fiber diameter, the experimental group was substantially lower than that of the control group, but the statistic difference was not significant (p<0.05). The morphology was very similar in both groups, microscopically. From the above results, We conclude that $Gore-Tex^{(R)}$ qualifies as an ideal nerve conduit. It is suggested that $Gore-Tex^{(R)}$ tube filled with skeletal muscle may, substitute for an autologous nerve graft.

Valproic Acid Effect in Nerve Regeneration Using Gore-Tex® Tube Filled with Skeletal Muscle (골격근섬유로 채워진 Gore-Tex® 도관을 이용한 신경재생에 있어서 Valproic Acid의 효과)

  • Kang, Nak Heon;Oh, Hyeon Bae;Lee, Ki Ho;Kim, Jong Gu
    • Archives of Plastic Surgery
    • /
    • v.33 no.2
    • /
    • pp.213-218
    • /
    • 2006
  • As the large defect of peripheral nerve occurs, the autologous nerve graft is the most ideal method but it has many limitations due to donor site morbidities. Various materials have been developed for the nerve defect as the conduits, but none of these materials is satisfactory. Among them, $Gore-Tex^{(R)}$ tube seems to be one of the most ideal nerve conduit materials at peripheral nerve defect. Many researches have focused on finding the neurotrophic factors. It is recently demonstrated that Valproic acid(VPA) has an effect of axonal regeneration as a neurotrophic factor without enzymatic degradation and toxicity problems. The purpose of this study is to evaluate the effect of VPA on the nerve regeneration at the peripheral nerve defect. A 10 mm gap of rat sciatic nerve was made and $Gore-Tex^{(R)}$ tube filled with biceps femoris muscle was placed at the nerve defect site. We let the rat take VPA as drinking water in experimental group and did not give VPA to the control group. We estimated the results as electrophysiologic and histological aspects for 16 weeks after the surgery. The nerve conduction velocity, total myelinated axon count, myelin sheath thickness and mean nerve fiber diameter significantly increased in VPA-treated experimental group when compared to the control (p < 0.05). From the above results, we conclude that VPA promotes the nerve regeneration at the peripheral nerve defect site. It is suggested that $Gore-Tex^{(R)}$ tube filled with skeletal muscle and VPA administration may be a good substitute for autologous nerve graft.

A Study on the Heat Transfer of In-line Heat Exchanger (직렬 열교환기의 열전달에 관한 연구)

  • Choe, S.Y.;Kim, M.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.48-53
    • /
    • 2008
  • Heat exchangers are commonly used in practice in a wide range of application, from heating and air-conditioning system in a household, to chemical processing and power production in a large plant. Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluids. The heat transfer characteristics of tube banks of in-line arrangements of four circular cylinders in a cross flow are compared for a range of tube locations and Reynolds numbers. The in-line pitch ratio was set up in the range of $1.5\leq L/d\leq4.0$, where L is the center to center distance and d the circular cylinder diameter, and in the Reynolds number of $13,000\leq Re\leq50,000$. The local and mean Nusselt numbers were estimated, and then. Subsequently, the heat transfer characteristics of four circular cylinders were found to exhibit a strong dependency upon the cylinder spacing and separation point of their upstream cylinders.

  • PDF

Performance Evaluation of Automatic Segmentation based on Deep Learning and Atlas according to CT Image Acquisition Conditions (CT 영상획득 조건에 따른 딥 러닝과 아틀라스 기반의 자동분할 성능 평가)

  • Jung Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • This study analyzed the volumes generated by deep learning and atlas-based automatic segmentation methods, as well as the Dice similarity coefficient and 95% Hausdorff distance, according to the conditions of conduction voltage and conduction current in computed tomography for lung radiotherapy. The first result, the volumes generated by the atlas-based smart segmentation method showed the smallest volume change as a function of the change in tube voltage and tube current, while Aview RT ACS and OncoStudio using deep learning showed smaller volumes at tube currents lower than 100 mA. The second result, the Dice similarity coefficient, showed that Aview RT ACS was 2% higher than OncoStuido, and the 95% Hausdorff distance results also showed that Aview RT ACS analyzed an average of 0.2-0.5% higher than OncoStudio. However, the standard deviation of the respective results for tube current and tube voltage is lower for OncoStudio, which suggests that the results are consistent across volume variations. Therefore, caution should be exercised when using deep learning-based automatic segmentation programs at low perfusion voltages and low perfusion currents in CT imaging conditions for lung radiotherapy, and similar results were obtained with conventional atlas-based automatic segmentation programs at certain perfusion voltages and perfusion currents.

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Numerical Study on the Pulse Heating Type Infinitesimal Liquid Mass Flow Meter (단속가열식 액체용 극소질량유량 계측기에 관한 수치해석적 연구)

  • Kim, Taig Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • Numerical study on the new design of the liquid mass flow meter in infinitesimal flow rate for semiconductor production is performed. The heater and thermistor are wired on the circular tube about 0.3mm inner diameter with designed gap between them. After the time interval from the single pulse heating the thermistor reaches its peak temperature and this time interval is almost inversely proportional to the liquid mass flow rate. The axial conduction in tube wall and convection through the flow is combined. As a result, the peak temperature moving velocity is much smaller than flow mean velocity and there is no linear relationship between them. In this study, the effects of design parameters such as the tube inner/outer diameter, wired heater width, and the gap between heater and thermistor are investigated and the trends of optimization in these parameters are discussed.