• Title/Summary/Keyword: Tube-by-tube method

Search Result 1,977, Processing Time 0.025 seconds

Toluene Determination in Workplace by Charcoal Tube Method (Charcoal Tube에 의(依)한 작업환경중(作業環境中) Toluene 함량(含量)에 관(關)한 연구(硏究))

  • Kim, Hyung-Suk;Koo, Do-Suh;Park, Yang-Won;Lee, Jeong-Whan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.193-198
    • /
    • 1983
  • In the determination of organic solvents in workplaces direct reading tube method have been used in Korea for decades. But this method is less accurate and couldn't measure TWA(Time Weighted Average) for 8 hours. Authors tried to detect Toluene concentration in S factory by using charcoal tube according to NIOSH method. The concentration was 158.8ppm. We propose this charcoal tube method should be substituted to get accurate results and to protect employee in workplaces related with solvents.

  • PDF

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

Determination of Material Properties of Tube using Inverse Engineering and Analytic Method in Tube Bulge Test (역공학과 해석적 방법을 이용한 관재벌지시험에서의 관재물성치 결정)

  • Kim, Tae-Joon;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1508-1516
    • /
    • 2003
  • In numerical analysis for hydroforming process, the stress calculation is effected by flow stress which is general obtained by stress-strain relationship from uni-axial tension test, so the result of the analysis, especially in tube hydroforming, has limitation of accuracy, tubes are made in roll-forming process and become work-hardened. Then roll forming process causes material properties between rolling direction and circumstantial direction of the tube to be different. So it is difficult to predict material behavior in the process condition of bi-axial stress state. In this study, the flow stress of the tube is determined by inverse engineering approach and bulge test that is widely used for formability test in the condition of bi-axial stress. And Hill's quadratic yield function and flow rule are used to consider the anisotropy of the tube in the roll forming process.

Comparison of Exposure dose according to the C-arm Angle Change (C-arm 각도 변화에 따른 피폭선량 비교)

  • Shin, Seong-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.453-458
    • /
    • 2011
  • This study aimed to figure out the change of exposure dose to the radiologist according to the C-arm angle change. For the exam it was fixed with 101 kvp and 4.9mA for the exposure time with 3 seconds and 5 seconds respectively. C-arm Tube was located both under and over, then the average was taken after performing for 5 times with the change of angle from -30 degree to 0, 30, 60 and 90 degree. The detector measured in 160cm high from the position of the radiologist who operates the C-arm. The measurement was shown its highest result at -30 degree followed by 0, 30, 60, 90 from the highest order. Over tube method is higher than under tube method. Therefore, to reduce the exposure dose of the radiologist, it is required for using under tube method instead of over tube method. When the angle change is made, it is recommended to use the angle that tube is growing further apart from the radiologist. And it is also necessary to shorten exposed time as much as possible to create the same quality image and also to reduce the exposure dose.

Performance Analysis of Axisymmetric Mufflers by BEM (경계요소법을 이용한 축대칭 소음기의 성능해석)

  • 권영필;임정빈;정갑철
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.337-344
    • /
    • 1995
  • A BEM program is developed for the performance analysis of axisymmetric mufflers. In the program the sub-region method is used to deal with singularity or inner boundary. The program is applied to typical axisymmjetric mufflers such as simple expansion, extended tube, perforated tube and absorptive expansion sufflers. The transmission losses of the mufflers are calculated by the program and compared with experiments. It is found that the prediction is in a good agreement with measurement, except for the absorptive muffler with parallel lining.

  • PDF

Feasibility of Using the Clamp Meter in Measuring X-Ray Tube Current

  • Kim, Sung-Chul
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.38-41
    • /
    • 2013
  • The clamp meter maintains electric safety as a non-invasive method while measuring the absolute value of tube current with it has been recently developed for an X-ray high-tension cable. Especially this can show high accuracy at short X-ray exposure time. Considering such a condition, this study is to evaluate the feasibility of a clamp meter in measuring X-ray tube current by taking the measurements and comparing with those of the Dynalyzer III which has been considered as a standard measuring device. From measuring the tube current accuracy depending on changes in tube voltage and exposure time, the clamp meter showed higher accuracy rate which was -1.3~4.2% difference. Thus clamp meter can be used for clinical radiologists who are not familiar electric circuit to manage X-ray devices easily and correctly in the future.

Convection Effects on PGSE-NMR Self-Diffusion Measurements at Low Temperature: Investigation into Sources of Induced Convective Flows

  • Chung, Kee-Choo;Yu, Hyo-Yeon;Ahn, Sang-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1970-1974
    • /
    • 2011
  • The effects of convection on the measurement of the diffusion coefficients of liquids by the pulsed gradient spin echo (PGSE) NMR method at low temperature are discussed. To examine the generation of convective flows, we used four different types of sample tubes in the diffusion measurements with temperature variation; a normal 5 mm NMR tube, a Shigemi tube, an ELISE type tube, and a capillary tube. Below room temperature, the calculated diffusion coefficients of chloroform in 5 mm o.d. type tubes increased with decreasing temperature, while those in the capillary tube decreased linearly. The convective flow was found to be significant even at low temperature and it seemed to be mainly induced by the transverse temperature gradient. It was also found that the capillary tube was most appropriate to measure the diffusion coefficients, since its small diameter is effective in suppressing the convective flows at both high and low temperatures.

A Study on the Post Deformation According to an Environmental Temperature of the Plastic Fuel Tube for Automobile (자동차용 플라스틱 연료튜브의 환경온도에 따른 후변형에 관한 연구)

  • Park, J.S.;Moon, C.Y.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.56-60
    • /
    • 2003
  • Recently the plastic fuel tube is usually used to reduce production cost and weight in automobiles. These days, material used to plastic fuel tube is the polyamide12. The fuel tube is made of the PA12. Post deformation of the tube has been changed by environmental temperature. So, it is important to prevent post deformation. The experiment is performed to investigate post deformation of the tube produced by each bending process. In this study, the results we obtained are used to bending process system for post deformation as the environmental temperature of the tube. It turned out that the method of steam heating and air cooling was shown less deformation than other methods.

  • PDF

Analysis of Internal Flow for Component Cooling Water Heat Exchanger in CANDU Nuclear Power Plants (중수로 기기냉각수 열교환기 내부 유동 해석)

  • Song, Seok-Yoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.33-41
    • /
    • 2012
  • The component cooling water heat exchangers are critical components in a nuclear power plant. As the operation years of the heat exchanger go by, the maintenance costs required for continuous operation also increase. Most heat exchangers have carbon steel shells, tube support plates and flow baffles. The titanium tube is susceptible to flow induced vibration. The damage on carbon steel tube support rod and titanium tube around cooling water entrance area is inevitable. Therefore, analysis of internal flow around the component cooling water entrance and tube channel is a good opportunity to seek for failure prevention practice and maintenance method. The numerical study was carried out by FLUENT code to find out the causes of tube failure and its location.

Temperature Prediction Method for Superheater and Reheater Tubes of Fossil Power Plant Boiler During Operation (화력발전 보일러 과열기 및 재열기 운전 중 튜브 온도예측기법)

  • Kim, Bum-Shin;Song, Gee-Wook;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The superheater and reheater tubes of a heavy-load fossil power plant boiler can be damaged by overheating, and therefore, the degree of overheating is assessed by measuring the oxide scale thickness inside the tube during outages. The tube temperature prediction from the oxide scale thickness measurement is necessarily accompanied by destructive tube sampling, and the result of tube temperature prediction cannot be expected to be accurate unless the selection of the overheated point is precise and the initial-operation tube temperature has been obtained. In contrast, if the tube temperature is to be predicted analytically, considerable effort (to carry out the analysis of combustion, radiation, convection heat transfer, and turbulence fluid dynamics of the gas outside the tube) is required. In addition, in the case of analytical tube temperature prediction, load changes, variations in the fuel composition, and operation mode changes are hardly considered, thus impeding the continuous monitoring of the tube temperature. This paper proposes a method for the short-term prediction of tube temperature; the method involves the use of boiler operation information and flow-network-analysis-based tube heat flux. This method can help in high-temperaturedamage monitoring when it is integrated with a practical tube-damage-assessment method such as the Larson-Miller Parameter.