• Title/Summary/Keyword: Tube propagation

Search Result 132, Processing Time 0.025 seconds

An Experimental Study on Flame Propagation along Non-premixed Vortex Tube (비예혼합 선형 와환에서의 화염 전파 특성에 관한 실험적 연구)

  • Yang, Seung-Yeon;Roh, Yoon-Jong;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.864-870
    • /
    • 2001
  • Flame propagation along vortex tube was experimentally investigated. The vortex tube was generated by the ejection of propane from a nozzle through a single stroke motion of a speaker and the ignition was induced from a single pulse laser. Non-reactive flow fields were visualized using shadow technique. From these images, vortex ring size and translational velocity were measured in order to determine the ignition time and position. Flame structure and flame speed were measured using high speed CCD camera. Flame speed was accelerated during the initial stage of flame kernel growth, and reached near constant value during steady propagation period. Near the completion of propagation, flame speed was decelerated and then extinguished. Flame speed along the non-premixed vortex tube was found to be linearly proportional to circulation, which was similar to that of the flame propagation along premixed vortex ring. Ignition position minimally affects the propagation characteristics. These imply that flame is propagating along the maximum speed locus expected to be along stoichiometric contour and also support the existence of tribrachial flames.

  • PDF

Time and distance of tulip-inversion in various shaped tube (다양한 형상의 관내에서 화염전파시 튤립화염으로 전환되는 시간과 거리)

  • Jung, Sang-Hun;Lee, Uen-Do;Kim, Nam-Il;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.140-146
    • /
    • 2002
  • The tulip-inversion of flames in half-open tubes was investigated experimentally. Experiments was carried out in tubes with various shapes. The image of a flame propagation were pictured by HICCD(High speed intensified CCD) and the dynamic pressure of tubes was measured by a piezo pressure sensor. By analyzing the images of the flame propagation, we found the time and the distance for the occurrence of tulip-inversion. Regardless of the shapes of tubes, time of tulip-inversion are similar and inversely proportional to the burning velocity. But distances have different tendency. In a straight tube, the distance of tulip-inversion increases when the burning velocity increases. But in a converging tube, the distance of tulip-inversion decreases when a burning velocity increases. And the distance of tulip-inversion in a converging tube is much smaller than the distance of tulip-inversion in a straight tube. These results are caused by the deceleration of a flame when the diameter of a hole in open-side of a tube is small. The deceleration causes little effect on the time of tulip-inversion.

  • PDF

Study on the Characteristics of Impulse Wave Discharged from the Tube Exit with Non-Circular Cross-Section (비원형 관출구로부터 방출되는 펄스파의 특성에 관한 연구)

  • Shin, Hyun-Dong;Kweon, Yong-Hun;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.550-555
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and complicated flow is formed near tube exit. The flow field is influenced by the cross-sectional geometry of tube exit, such as circular, square, rectangular, trapezoid and etc. In the current study, three-dimensional propagation characteristics of impulse wave discharged from the tube exit with non-circular cross section are numerically investigated using a CFD method. Total variation diminishing (TVD) scheme is used to solve the three-dimensional, unsteady, compressible Euler equations. Computations are performed for the Mach numbers of the incident shock wave $M_{s}$ below 1.5. The results obtained show that the peak pressure of the impulse wave and propagation directivity depends on the cross-sectional geometry of tube exit and the Mach number of incident shock wave.

  • PDF

An Experimental Study on Micro Shock Tube Flow (Micro Shock Tube 유동에 관한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.350-355
    • /
    • 2012
  • Past few years have seen the growing importance of micro shock tubes in various engineering applications. A pharma ballistic technique is one such application which uses micro shock tube to accelerate drug particles and penetrate into skin, thus avoiding the usual injection drug delivery system. But for the efficient design of such instruments requires the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on a micro shock tube of 3 mm diameter to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.

  • PDF

Understanding of Laminar Burning Velocity within a Length Scale Domain (길이 스케일이 관여된 층류 화염의 연소 속도 이해)

  • Jung, Yongjin;Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.77-78
    • /
    • 2015
  • Laminar burning velocities have been predicted by constant volume combustion chamber, counter flow burner and others. In this study, the measured flame propagation velocities in an assembled annular stepwise diverging tube were plotted with respect to equivalence ratio, length scale, and velocity scale. Three dimensional approach to understand the flame propagation velocity including laminar burning velocity is investigated, and the surface provides the correlation among quenching distance, propagation velocity, and equivalence ratio.

  • PDF

An Experimental Study on Micro Shock Tube Flow (Micro Shock Tube 유동에 관한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.74-80
    • /
    • 2012
  • Past few years have seen the growing importance of micro shock tubes in various engineering applications like micro combution, micro propulsion, particle delivery systems. But in order to efficiently apply Micro Shock Tube to such areas require the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on micro shock tubes of two diameters to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.

Three-Dimensional Numerical Analysis for Detonation Propagating in Circular Tube

  • Sugiyama, Yuta;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.364-370
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.

  • PDF

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

A Study on Propagation of Guided Waves in a Steam Generator Tube (증기발생기 세관에서의 유도초음파 전파에 관한 연구)

  • 송성진;박준수;김재희;김준영;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.353-361
    • /
    • 2004
  • Propagation of the guided waves in a steam generator (SG) tube was investigated. Dispersion curves and the incident angles corresponding to the specific modes were calculated for the SG tube. The modes of guided wave were identified by time-frequency diagrams obtained by short time Fourier transform. Group velocities were also determined from the time-frequency diagrams obtained at the different separations of transducers. In experiment. distinct mode conversion was not observed when the guided ultrasound passed curved region of the S/G tube. The optimum mode of guided wave for the inspection of SG tube was suggested and verified by experiments.

Experimental Study of the Shock Wave Dynamics in Micro Shock Tube (Micro Shock Tube에서 발생하는 충격파 실험)

  • Park, Jinouk;Kim, Gyuwan;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.54-59
    • /
    • 2013
  • Micro shock tubes are now-a-days used for a variety engineering applications such as in the field of aerospace, combustion technology and drug delivery systems. But the flow characteristics of micro shock tube will be different from that of well established conventional macro shock tube under the influence of very low Reynolds number and high Knudsen number formed due to smaller diameter. In present study, experimental studies were carried out to a closed end (downstream) Micro Shock Tube with two different diameters were investigated to understand the flow characteristics. Pressure values were measured at different locations inside the driver and driven section. The results obtained show that with the increase in diameter the shock propagation velocity increases as well as the effect of reflected shock wave will be more significant under the same diaphragm rupture pressure.