DOI QR코드

DOI QR Code

Experimental Study of the Shock Wave Dynamics in Micro Shock Tube

Micro Shock Tube에서 발생하는 충격파 실험

  • Park, Jinouk (Department of Mechanical Engineering, Andong National University) ;
  • Kim, Gyuwan (Department of Mechanical Engineering, Andong National University) ;
  • Kim, Heuydong (Department of Mechanical Engineering, Andong National University)
  • Received : 2012.11.30
  • Accepted : 2013.08.07
  • Published : 2013.10.01

Abstract

Micro shock tubes are now-a-days used for a variety engineering applications such as in the field of aerospace, combustion technology and drug delivery systems. But the flow characteristics of micro shock tube will be different from that of well established conventional macro shock tube under the influence of very low Reynolds number and high Knudsen number formed due to smaller diameter. In present study, experimental studies were carried out to a closed end (downstream) Micro Shock Tube with two different diameters were investigated to understand the flow characteristics. Pressure values were measured at different locations inside the driver and driven section. The results obtained show that with the increase in diameter the shock propagation velocity increases as well as the effect of reflected shock wave will be more significant under the same diaphragm rupture pressure.

현재 Micro Shock Tube는 다양한 공학응용분야에 적용되고 있으며, 특히 우주항공 및 연소기술 그리고 약물전달 등의 분야에서 광범위한 잠재력을 가진 장치 중 하나이다. 그러나 Micro Shock Tube에서의 유동 특성은 작은 직경으로 인해 형성되는 매우 낮은 Reynolds Number와 높은 Knudsen Number의 영향으로 일반적으로 잘 알려진 Macro Shock Tube의 유동 특성과 상이하게 나타난다. 본 연구에서는 이러한 Micro Shock Tube의 유동 특성을 상세히 연구하기 위해 직경이 다른 두 가지 Micro Shock Tube의 실험을 수행하였다. 충격파 전파를 측정하기 위해 고압관의 파막압력 그리고 저압관의 세 지점에 센서를 설치하여 압력을 측정하고 분석하였다. 본 연구로부터, 동일한 파막압력에서 Micro Shock Tube 직경의 증가에 따라 충격파 전파속도가 증가하였고, 반사파의 영향도 더 크게 받았다.

Keywords

References

  1. Mirshekari, G. and Brouillette, M., "One- Dimensional Model for Microscale Shock Tube Flow," Shock Waves, Vol. 19, pp. 25-38, 2009. https://doi.org/10.1007/s00193-009-0189-7
  2. Rajesh, G., Kim, H.D., Setoguchi, T. and Raghunathan, S., "Performance Analysis and Enhancement of the Ballistic Range," Journal of Aerospace Science, Part G, Vol. 221, pp. 649-659, 2007.
  3. Arun, K.R. and Kim, H.D., "Computational Study of the Unsteady Flow Characteristics of a Micro Shock Tube," Journal of Mechanical Science and Technology, Vol. 27, No. 2, pp. 451-459, 2012.
  4. Arun, K.R. and Kim, H.D., "Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube," Journal of the Korean Society of Visualization, Vol. 10, No. 1, pp. 40-46, 2012. https://doi.org/10.5407/JKSV.2012.10.1.040
  5. Kim, H.D., "Shock Wave Phenomena in Fluid Engineerings(I)," Transactions of the KSME, Vol. 169, pp. 961-976, 1994.
  6. Park, J.O., Kim, G.Y. and Kim, H.D., "An Experimental Study on Micro Shock Tube Flow," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 5, pp. 74-80, 2012. https://doi.org/10.6108/KSPE.2012.16.5.074

Cited by

  1. Numerical simulation of flow characteristics in micro shock tubes vol.24, pp.3, 2015, https://doi.org/10.1007/s11630-015-0780-4
  2. Study on drug powder acceleration in a micro shock tube vol.30, pp.9, 2016, https://doi.org/10.1007/s12206-016-0813-2
  3. Experimental Study of Micro-Shock Tube Flow vol.39, pp.5, 2015, https://doi.org/10.3795/KSME-B.2015.39.5.385
  4. Numerical simulation of shock wave and contact surface propagation in micro shock tubes vol.29, pp.4, 2015, https://doi.org/10.1007/s12206-015-0341-5
  5. Experimental study on gas-particle two-phase flows in a micro shock tube vol.20, pp.1, 2017, https://doi.org/10.1007/s12650-016-0364-8