Since heat exchangers are composed of bank of tubes, the knowledge on the flow and heat transfer characteristics of the tube bank are required for the optimum design and selection of heat exchangers. In this paper, the turbulent flow fields and heat transfers normal to a staggered tube bank are solved numerically employing K-.epsilon. 2 equation turbulence model and non-orthogonal coordinate transformation for the treatment of curved surface of tubes. Predicted mean Nusselt numbers of tube bank agree reasonably well with Grimision's correlation
This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a HRSG. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At this tube bank, dominant frequencies of vibration in this system were 43.5, 67.5㎐. The 3$\^$rd/ acoustic natural frequency calculated was 68.5㎐. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}$20%, acoustic resonance could occur. In this system, in order to prevent acoustic resonance, acoustic baffle was installed in the tube bank before operating. But acoustic resonance occurred. So, we evaluate the effect of acoustic mode due to baffle extension length. After investigating, we did revise acoustic baffle to eliminate acoustic resonance effectively.
In this study, a longitudinal pitch effect on in-line tube bank heat transfer has been analyzed numerically. To verify the accuracy of the solver model and boundary conditions, global Nusselt number(Nu) and pressure drop across the 2 row tube bank are compared with the existing experimental correlations under 500 ~ 2,000 Reynolds number(Re) range. By changing transverse pitch($S_T$) or longitudinal pitch($S_L$) separately in tube bank, we're trying to identify the each effect on heat transfer. We found that the effect of transverse pitch can be accounted for Reynolds number evaluated with maximum velocity($V_{max}$) at the smallest flow area similar to most existing correlations. Variation of the longitudinal pitch($S_L$) has a greater impact on the heat transfer compared to the transverse pitch($S_T$). Overall Nusselt number increases with larger longitudinal pitch($S_L$), however individual Nusselt number of the tube row has significant difference after the first row.
Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator.
배열회수 보일러는 입구 확관 덕트와 전열관군으로 이루어져 있는데 전열관군에서 열전달 효율을 향상하기 위해서는 전열관군 전에서 배기가스 유동이 균일하게 되어야 한다. 본 연구에서는 전열관군 전의 배열회수 보일러 입구 덕트에서 유동 특성을 살펴보았고 전열관군의 열전달 메커니즘을 지금까지 다른 연구들에서 적용하였던 일정한 열전달 량으로 한 경우와 전열관군 배관의 내부와 외부의 대류열전달을 고려한 열전달 메커니즘을 적용한 경우의 해석에서 온도 분포를 비교하여 배열회수 보일러의 전열관군에서 실제 현상에 보다 적합한 열전달 메커니즘을 정립하는 것을 목적으로 하였다. 본 연구를 통하여 전열관군 배관의 내부와 외부의 대류열전달을 고려한 열전달 메커니즘을 적용한 해석이 일정한 열전달 량을 적용한 경우보다 온도 분포가 타당한 결과를 도출하였고 이렇게 적용한 경우는 배열회수 보일러 탈질설비 전단에서 온도 분포가 설계 기준 ${\pm}10^{\circ}C$에 만족함을 알 수 있었다.
Almost all power plant boiler has temperature distribution nonuniformity problem in heat transfer tube flow path. It can cause hot spot damage of superheated or reheated heat transfer section and reduce maintenance schedule when nonuniformity is severe. There are two solutions for improvement temperature nonuniformity. one is change of gas flow distribution of gas path and the other is contorl steam flow in tube bank. Of course, first method is very difficulty to apply but second method is'nt. In this paper, control steam flow is used to solve temperature nonuniformity of power plant boiler.
This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.
This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a power plant. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At the resonance, the value of vibration in this system was 595 ${\mu}m$, p-p and the sound pressure level was maximum 103 dBA. And the resonance frequency was found to be 35 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance is possible. In this system, the difference of these frequencies was 1.8%. We can evaluate the possibility of acoustic resonance by using damping parameter. We did eliminate acoustic resonance by installing baffle in tube bank. After installing baffle, the level of vibration and noise was reduced dramatically.
Most of the fossil power plants firing lower grade coals are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. The poor combustion conditions are directly related to the gas flow deviation in upper furnace and convection tube-bank but a less reported issue related to in large-scale oppose wall fired boilers. In order to develop a on-line combustion monitoring system and suggest an alternative heat flux estimation method at tube bank, which is very useful information for boiler design tool and blower optimizing system, field test was conducted at operating power boiler. During the field test the exhaust gases' temperature and tube metal temperature were monitored by using a spatially distributed sensors grid which located in the boiler's high temperature vestibule region. At these locations. the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. Test results showed that the flue gas monitoring method is more proper than metal temperature distribution monitoring for real time combustion monitoring because tube metal temp. distribution monitoring method is related to so many variables such as flue gas, internal flow unbalance, spray etc., Heat flux estimation at the tube bank with flue gas temp. and metal temp. data can be alternative method when tube drilling type sensor can't able to use.
열교환기 관군에서 덕트 입구의 속도가 일정한 경우와 정현파로 변하는 경우에 대하여 시간에 따라 배관 주위에서 유동 특성과 열전달 특성 규명을 위해 와류 분포와 온도 분포 변화를 비교 분석하였다. 입구 속도가 정현파 변동이 있는 경우에 열교환기 관군에서 대표적인 원관에서 양력과 항력의 power spectral density를 도출하여 유동 변화에 따른 주파수 특성을 살펴보았다. 입구 유속이 일정한 경우는 열교환기 관군의 입구쪽 관군 부근에서 원관 주위 유동에서 관찰 할 수 있는 칼만 와류를 관찰할 수 있었다. 정현파 입구 속도 변동의 경우에서도 입구쪽 관군에서 칼만 와류가 형성되는 것을 관찰할 수 있었고 정현파 입구 속도 변동에 따른 유동 와류 변화를 관찰할 수 있었다. 온도 분포 변화는 일정한 입구 속도 변화의 경우와 정현파 입구 속도변화의 경우 모두 유동 와류 분포에서 관찰한 것과 유사하게 나타나는 것을 확인할 수 있었다. 유동 주파수는 일정한 입구 속도의 경우는 37.25 Hz이며 정현파 입구 속도의 경우는 정현파 주파수와 동일하게 18.63 Hz으로 나타났다. 열교환기 배관 전체의 평균 Nu수는 일정한 입구 속도의 경우에는 1051이며 정현파 입구 속도 변동의 경우는 1117로 나타나서 정현파로 입구 속도가 변하는 경우의 열전달이 6.3% 증가하는 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.