• Title/Summary/Keyword: Tube Cleaning System

Search Result 23, Processing Time 0.028 seconds

The Numerical Analysis of Fluid Flow in the Tube Cleaning System (튜브 클리닝 시스템 내부의 유동 특성에 관한 수치해석적 연구)

  • Jung, Kyung-Chul;Lee, Chi-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • The numerical analysis of fluid flow in the tube cleaning system is examined. The working flow used in this study is seawater, and the temperature change is not considered as the temperature change of seawater in the tube cleaning system is negligible. Also, the analysis is performed under the assumption of steady state. The screens of complicated morphologies are simplified for the analysis, and only one fourth of the tube cleaning system is modeled as the system has a symmetrical shape. The velocity inlet boundary condition is employed for the seawater inlet, whereas the outflow boundary condition is employed for two seawater outlets. In applying the outflow boundary condition for the system with more than two outlets, the flow rate can be arbitrarily assigned. In the analysis, the finite-volume method based numerical analysis tool, the pressure based solver, the standard k-$\varepsilon$ model are utilized, and the under relaxation factor is modified appropriately. From the analysis, the distribution of velocity vectors, pressure and path lines are obtained, and the physical characteristics of fluid flow in the tube cleaning system is well-examined.

A study on the improvement of cleaning performance in bag-filter (여과집진기의 탈진 거동 개선에 관한 연구)

  • Hong, Sung-Gil;Kum, Young-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1571-1578
    • /
    • 2015
  • The cleaning characteristics of pulse air jet type cleaning system which is widely applied in the industries were identified by utilizing the computational fluid dynamics (CFD) and the cleaning performance in modified shape of dedusting unit was compared in this study. The review on each shape of cleaning part showed that the case of installing the nozzle on the blow tube (Case-3) and the case of installing the double intaking tube to the venturi (Case-4 and Case-5) were more excellent than the structure (Case-1). Also, the optimal venturi shape was designed and examined its applicability to the site in a pilot scale plant. A combined system of a blow tube and a venturi proposed by this study turned out to be very effective for concentrating an cleaning air compared to existing systems, such as using only blow tube and combines the blow tube and venturi. In addition, as a result of installing and testing a venturi proposed by this study, the cleaning frequency and cleaning time were much improved compared to a case of using a commercial venturi that is under use at the industrial sites.

Development on Cleaning System of Condenser for Nuclear Power Plant by Using Sponge Ball (스펀지 볼을 이용한 원전용 복수기 튜브 세정 시스템 개발)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.21-26
    • /
    • 2015
  • This study presents a development of the cleaning system in a nuclear power plant condenser. The tube cleaning system is very important equipment in a power plant condenser. Specially, removal of the fouling is a key process in the condenser tube. The objective of this study is development of a ball collector system for cleaning a condenser by using a sponge ball. This study uses CFD in order to optimize design of the ball strainer screen. Through the CFD, the implication of the ball strainer screen for static pressure distribution is examined. Results of research, this study have developed a 1/5 scale model for application to the power plant and developed a performance test equipment.

Flow Analysis of the Tube Type Marine Auto-Backwashing Fuel Oil Filter (튜브형 박용 자동역세 연료유 필터 내부의 유동해석)

  • Yang, Jang-Sik;Kim, Bong-Hwan;Park, Young-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.578-587
    • /
    • 2009
  • In this paper, the characteristics of incompressible flow in a tube type marine fuel oil filter have been investigated. Fluent program has been used to obtain the solutions for the problems of three-dimensional, turbulent fuel oil flow in a filtering system. The inlet flow field is assumed to be uniform. The velocity and pressure distributions were obtained using Darcy's law. The increase of inlet velocity for cleaning fuel oil may cause some problems like vibration of the filter element. It was also required to consider the distribution of cleaning velocity because the worst distribution of cleaning velocity may cause the local insufficient cleaning effect and furthermore the effective filtration area can be reduced. The simulated results show that the computer code can be successfully applied for simulation of the complex base oil flow through the porous media. This paper could be applied to the design of auto-backwashing filtering system as design factor.

Numerical Analysis of Ball Strainer Screen Module Blockage Effects (볼 여과기 스크린 모듈의 단면 폐쇄효과에 관한 수치해석적 연구)

  • Jeong, Gyung-Cheol;Lee, Hae-Soo;Lee, Chi-Woo
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.83-89
    • /
    • 2015
  • A ball strainer screen module, which is used for a condenser tube cleaning system, is a critical mechanical component for maintaining condenser cleanliness. Despite of this importance, not many research have been focused on this module because of its relatively low usage. Employing CFD, this study examines the implication of fluid velocity change and blockage ratio on the ball strainer screen velocity and the static pressure distribution. Through this study, the impact of blockage in the space between ball strainer screen modules is verified. Also, it is found that the ranges of non-dimensional velocity distribution and static pressure distribution decrease as blockage ratio becomes smaller.

The Thinning Phenomena of the Wall Thickness during $360^{\circ}$ Cold Bending of Ti-6Al-4V Large-Diameter Seamless Tube (대 직경 이음매 없는 Ti-6Al-4V 합금 튜브의 $360^{\circ}$ 냉간 굽힘 시 벽두께 감소현상)

  • 허선무;박종승
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.231-236
    • /
    • 2000
  • The wall thickness of the Ti-6Al-4V Large-Diameter Seamless Tube, which is supposed to be a very important parameter in a system design, was measured during $360^{\circ}$ cold bending processes. The factors or processes affecting the wall thickness include 1) primary bending, 2)secondary or finishing step of the $360^{\circ}$ bending, 3)cleaning processes in CERO TRUTM(CT)process. But thinning effects of the wall thickness during the cleaning processes are negligible compared to those during the formers. The variations in the percentages of the change in wall thickness were found to be from -14% to +16%.

  • PDF

Development of Filtration System for Korean Model IGCC Demonstation Plant (한국형 IGCC 대용량 집진시스템 개발)

  • Park, Seok-Joo;Lim, Kyeong-Soo;Lim, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.812-815
    • /
    • 2007
  • Computational simulation has been performed to design the filtration system for Korea model IGCC demonstration plant. The filtration system for optimal design has four effective filters corresponding to the clusters composed of a group of ceramic candle filters. It was analyzed how the different entrance geometry influences the flow field and the particle behavior in the filtration system. The particle loading is minimum when the gas mixed with particles flows into the filter vessel with a shroud tube through a tangential inlet. However, the particle loading is maximum when the gas with particles enters the filter vessel through a normal inlet which a entrance tube extended from. By controling adequately both conditions of inflow, the filtration system can be operated optimally to prolong the filter life-time and to save the energy for cleaning filters.

  • PDF

System Configuration of Ultrasonic Nuclear Fuel Cleaner and Quantitative Weight Measurement of Removed CRUD (초음파 핵연료 세정장비의 시스템 구성과 제거된 크러드의 정량적 무게 측정법)

  • Jung Cheol Shin;Hak Yun Lee;Un Hak Seong;Yeong Jong Joo;Yong Chan Kim;Wook Jin Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Crud is a corrosion deposit that forms in equipments and piping of nuclear reactor's primary systems. When crud circulates through the reactor's primary system coolant and adheres to the surface of the nuclear fuel cladding tube, it can lead to the Axial Offset Anomaly (AOA) phenomenon. This occurrence is known to potentially reduce the output of a nuclear power plant or to necessitate an early shutdown. Consequently, worldwide nuclear power plants have employed ultrasonic cleaning methods since 2000 to mitigate crud deposition, ensuring stable operation and economic efficiency. This paper details the system configuration of ultrasonic nuclear fuel cleaning equipment, outlining the function of each component. The objective is to contribute to the local domestic production of ultrasonic nuclear fuel cleaning equipment. Additionally, the paper introduces a method for accurately measuring the weight of removed crud, a crucial factor in assessing cleaning effectiveness and providing input data for the BOA code used in core safety evaluations. Accurate measurement of highly radioactive filters containing crud is essential, and weighing them underwater is a common practice. However, the buoyancy effect during underwater weighing may lead to an overestimation of the collected crud's weight. To address this issue, the paper proposes a formula correcting for buoyancy errors, enhancing measurement accuracy. This improved weight measurement method, accounting for buoyancy effects in water, is expected to facilitate the quantitative assessment of filter weights generated during chemical decontamination and system operations in nuclear power plants.

A fouling mitigation device for a wastewater heat recovery heat pump system using a bubbling fluidized bed with cleaning sponge balls (버블 유동층과 세정 볼을 이용한 폐수 열원 히트펌프 시스템 증발기의 관 외측 오염 저감 장치에 관한 연구)

  • Kim, Jong-Soo;Kim, Do-Bin;Kim, Jun-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.152-156
    • /
    • 2016
  • Wastewater heat recovery heat pump systems use heated wastewater from public baths or factories as the heat pump's heat source. Generally, this system uses a bare tube evaporator. In the heat transfer process from wastewater to refrigerant, thermal resistance is caused primarily by fouling deposits on the outside surface of tube. Fouling directly increases thermal resistance and decreases heat pump efficiency. Thus, it is desirable to eliminate fouling. In this study, we fabricated a fouling mitigation device using a bubbling fluidized bed with cleaning sponge balls in the wastewater bath. Experimental conditions were as follows: $20^{\circ}C$ cold-water temperature, $40^{\circ}C$ wastewater temperature, 100 L/h cold water flow rate, and $0.161m^2$ heat exchanger surface area. Experimental results showed that the thermal resistance of fouling decreased by 56% with the fluidized bed alone and by 86% with both the fluidized bed and cleaning sponge balls.