• Title/Summary/Keyword: Tsai-Hill and Tsai-Wu failure criteria

Search Result 10, Processing Time 0.028 seconds

Optimization of hybrid composite plates using Tsai-Wu Criteria

  • Mehmet Hanifi Dogru;Ibrahim Gov;Eyup Yeter;Kursad Gov
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • In this study, previously developed algorithm is used for Optimization of hybrid composite plates using Tsai-Wu criteria. For the stress-based Design Optimization problems, Von-Mises stress uses as design variable for isotropic materials. Maximum stress, maximum strain, Tsai Hill, and Tsai-Wu criteria are generally used to determine failure of composite materials. In this study, failure index value is used as design variable in the optimization algorithm and Tsai-Wu criteria is utilized to calculate this value. In the analyses, commonly used design domains according to different hybrid orientations are optimized and results are presented. When the optimization algorithm was applied, 50% material reduction was obtained without exceeding allowable failure index value.

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

Analysis of the Stress-Strain Relationship of Concrete Compression Members Strengthened by Composite Materials (고분자복합재료 보강 콘크리트 압축부재의 응력-변형률 관계 해석)

  • 이상호;장일영;김효진;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.717-720
    • /
    • 1999
  • Recently, the fiber composite materials such as carbon fiber, glass fiber, or aramid, have been frequently used in strengthening reinforced concrete structures. The fiber composite materials typically have orthotropic characteristic and the strength changes significantly acording to the direction of fibers and the method of the lamination. In this study, an algorithm to estimate the stress-strain relationship of the composite materials which have different fiber directions and symmetric or non-symmetric lamination has been developed by using Tsai-Hill and Tsai-Wu failure criteria and progressive laminate failure theory. This algorithm has been implemented to several stress-strain models for the laterally confined concrete compression members such as Mander, Hosotani, and Nakatsuka. The evaluated stress-strain behaviors by the different models are discussed.

  • PDF

A Study on the Evaluation of Fiber and Matrix Failures for Laminated Composites using Hashin·Puck Failure Criteria (Hashin·Puck 파손기준 기반 적층 복합재료의 섬유 및 기지파손 평가에 관한 연구)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.143-152
    • /
    • 2015
  • In the present study, the fiber and matrix failure of composite laminates under arbitrary biaxial stresses were evaluated based on separate mode criteria such as Hasnin and Puck theories. There is a limitation to predict the fiber-dominant and/or matrix-dominant failures under arbitrary stress states using limit criteria (maximum stress and maximum strain theories) and interactive criteria (Tsai-Hill and Tsai-Wu theories). There is little literature for failure analysis of ships and offshore composite structures considering advanced failure theories such as Hashin and Puck theories. Furthermore, there is not enough practical commercial finite element analysis (FEA) code which is basically adopted the separate mode criteria. Hence, in the present study, the user-defined subroutine of commercial FEA code ABAQUS for evaluation of fiber and matrix failures of composite structures was developed based on Hashin and Puck failure criteria. And then, the proposed subroutine was validated by comparing with a series of experimental results of carbon- and glass-implemented composite laminates to guarantee the reliability and usefulness of the developed method.

The Importance of Size/scale Effect in the Failure of Composite Structures (복합재료 구조물의 파괴에 대한 치수효과의 중요성)

  • Kim, Duk-Hyun;Kim, Doo-Hwan
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • In this paper, the importance of the size effects on the strength ratio is demonstrated by numerical results. The rate of decrease of tensile strength is for glass fiber, based on the experience of a composite manufacturing specialist. For other material, similar procedure may be used until detailed test result on such material is available. The strength criterion used is that of Tsai-Wu fur stress space. The factors influencing the ratio are, reducing the tensile strength alone or both tensile and compression strengths, selection of the normalized interaction term, that is, the generalized von Mises criterion or the Hill's criterion, and the status of applied stresses. Some of the numerical results are presented for a guideline for the future study.

Structural Reliability of Thick FRP Plates subjected to Lateral Pressure Loads

  • Hankoo Jeong;R. Ajit Shenoi;Kim, Kisung
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.38-57
    • /
    • 2000
  • This paper deals with reliability analysis of specially orthotropic plates subjected to transverse lateral pressure loads by using Monte Carlo simulation method. The plates are simply supported around their all edges and have a low short span to plate depth ratio with rectangular plate shapes. Various levels of reliability analyses of the plates are performed within the context of First-Ply-Failure(FPF) analysis such as ply-/laminate-level reliability analyse, failure tree analysis and sensitivity analysis of basic design variables to estimated plate reliabilities. In performing all these levels of reliability analyses, the followings are considered within the Monte Carlo simulation method: (1) input parameters to the strengths of the plates such as applied transverse lateral pressure loads, elastic moduli, geometric including plate thickness and ultimate strength values of the plates are treated as basic design variables following a normal probability distribution; (2) the mechanical responses of the plates are calculated by using simplified higher-order shear deformation theory which can predict the mechanical responses of thick laminated plates accurately; and (3) the limit state equations are derived from polynomial failure criteria for composite materials such as maximum stress, maximum strain, Tsai-Hill, Tsai-Wu and Hoffman.

  • PDF

Optimal Design of Cylindrically Laminated Composite Shells for Strength (강도를 고려한 원통형 복합재료 구조물의 최적설계)

  • Kim, Chang-Wan;Hwang, Un-Bong;Park, Hyeon-Cheol;Shin, Dae-Sik;Park, Ui-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.775-787
    • /
    • 1996
  • An optimization procedure is proposed for the design of cylindrically laminated composite shell having midplane symmetry and subjected to axial force, torsion and internal pressure. Tsai-Wu and Tsai-Hill failure criteria are taken as objective functions. The stacking sequence represents the design variable. The optimal design formulation based on state space method is adopted and solution proccedure is described with the emphasis on the method of calculations of the design sensitivities. A gradient projection algorithm is employed for the optimization process. Numerical results are presented for the several test problems.

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

Strength Analysis for the Plate System of the Mark III Cargo Containment (Mark III 방열 판 구조물의 파손 강도 평가에 관한 연구)

  • Jeong, Han-Koo;Yang, Young-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.625-633
    • /
    • 2014
  • Mark III CCS plate is considered in this paper to perform its strength assessment. Mark III CCS plate is designed and constructed by stacking various non-metallic engineering materials such as plywood, triplex and reinforced PU foam that are supported by series of mastic upon inner steel hull structure. From the viewpoint of structural analysis, this plated structure is treated as a laminated anisotropic structure. Commercially available general purpose finite element analysis programs such as MSC PATRAN and MARC are used to develop the finite element (FE) model of the Mark III CCS plate. Because of the characteristics of LNG cargo that the Mark III CCS plate deals with, it is subjected to a wide range of temperature variations, i.e. about $-163^{\circ}C$ to $20^{\circ}C$. Different material properties of the Mark III CCS plate at these temperature levels are considered in the FE model. Using the developed FE model, strength assessment procedure is developed incorporating various anisotropic failure criteria such as Hashin, Hill, Hoffman, Maximum stress and Tsai-Wu. The strength assessment is performed within the initial failure state of the Mark III CCS plate and, as a result, failure details such as failure locations and loads are identified.

The Importance of Size/Scale Effects in the Failure of Composite Structures (복합구조물의 파괴에 관한 치수효과의 중요성)

  • Jung, Young-Hwa;Kim, Kyeong-jin;Won, Chi-Moon;Shim, Do-Sik
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.217-222
    • /
    • 1995
  • In this paper, the importance of the size effects on the strength ratio is demonstrated by numerical results. The rate of decrease of tensile strength is for glass fiber, based on the experience of a composite manufacturing specialist. For other material, similar procedure may be used until detailed test result on such material is available. The strength criteria used is that of Tsai-Wu for stress space. The factors influencing the ratio are, reducing the tensile strength alone or both tensile and compression strengths, selection of the normalized interaction term, that is, the generalized Von Mises criterion or the Hill's criterion, and the status of applied stresses. Some of the numerical results are presented for a guideline for the furture study.

  • PDF