• Title/Summary/Keyword: Truss

Search Result 1,179, Processing Time 0.031 seconds

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

Establishment of a Standard Procedure for Safety Inspections of Bridges Using Drones (드론 활용 교량 안전점검을 위한 표준절차 정립)

  • Lee, Suk Bae;Lee, Kihong;Choi, Hyun Min;Lim, Chi Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.281-290
    • /
    • 2022
  • In Korea, the number of national facilities for which a safety inspection is mandatory is increasing, and a safer safety inspection method is needed. This study aimed to increase the efficiency of the bridge safety inspection by enabling rapid exterior inspection while securing the safety of inspectors by using drones to perform the safety inspections of bridges, which had mainly relied on visual inspections. For the research, the Youngjong Grand Bridge in Incheon was selected as a test bed and was divided into four parts: the warren truss, suspension bridge main cable, main tower, and pier. It was possible to establish a five-step standard procedure for drone safety inspections. The step-by-step contents of the standard procedure obtained as a result of this research are: Step 1, facility information collection and analysis, Step 2, analysis of vulnerable parts and drone flight planning, Step 3, drone photography and data processing, Step 4, condition evaluation by external inspection, Step 5, building of external inspection diagram and database. Therefore, if the safety inspections of civil engineering facilities including bridges are performed according to this standard procedure, it is expected that these inspection can be carried out more systematically and efficiently.

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

An Improved Structural Reliability Analysis using Moving Least Squares Approximation (이동최소제곱근사법을 이용한 개선된 구조 신뢰성 해석)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.835-842
    • /
    • 2008
  • The response surface method (RSM) is widely adopted for the structural reliability analysis because of its numerical efficiency. However, the RSM is still time consuming for large-scale applications and sometimes shows large errors in the calculation of sensitivity of reliability index with respect to random variables. Therefore, this study proposes a new RSM in which moving least squares (MLS) approximation is applied. Least squares approximation generally used in the common RSM gives equal weight to the coefficients of the response surface function (RSF). On the other hand, The MLS approximation gives higher weight to the experimental points closer to the design point, which yields the RSF more similar to the limit state at the design point. In the procedure of the proposed method, a linear RSF is constructed initially and then a quadratic RSF is formed using the axial experimental points selected from the reduced region where the design point is likely to exist. The RSF is updated successively by adding one more experimental point to the previously sampled experimental points. In order to demonstrate the effectiveness of the proposed method, mathematical problems and ten-bar truss are considered as numerical examples. As a result, the proposed method shows better accuracy and computational efficiency than the common RSM.

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (I) Proposal of Load Distribution Ratios (단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율- (I) 하중분배율의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.259-267
    • /
    • 2008
  • The ultimate strengths of reinforced concrete deep beams are governed by the capacity of the shear resistance mechanism composed of concrete and shear reinforcing bars, and the structural behaviors of the beams are mainly controlled by the mechanical relationships according to the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of simply supported reinforced concrete deep beams. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the design of simply supported reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of a load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the prime design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete influencing the ultimate strength and behavior are reflected upon based on various and numerous numerical analysis results. In the companion paper, the validity of presented model and load distribution ratio was examined by employing them to the evaluation of the ultimate strengths of various simply supported reinforced concrete deep beams tested to failure.

Optimal Design of Overtopping Wave Energy Converter Substructure based on Smoothed Particle Hydrodynamics and Structural Analysis (SPH 및 구조해석에 기반한 월파수류형 파력발전기 하부구조물 최적 설계)

  • Sung-Hwan An;Jong-Hyun Lee;Geun-Gon Kim;Dong-hoon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.992-1001
    • /
    • 2023
  • OWEC (Overtopping Wave Energy Converter) is a wave power generation system using the wave overtopping. The performance and safety of the OWEC are affected by wave characteristics, such as wave height, period. To mitigate this issue, optimal OWEC designs based on wave characteristics must be investigated. In this study, the environmental conditions along the Ulleungdo coast were used. The hydraulic efficiency of the OWEC was calculated using SPH (Smoothed Particle Hydrodynamics) by comparing 4 models that changed the substructure. As a result, it was possible to change the substructure. Through design optimization, a new truss-type structure, which is a substructure capable of carrying the design load, was proposed. Through a case study using member diameter and thickness as design variables, structural safety was secured under allowable stress conditions. Considering wave load, the natural frequency of the proposed structure was compared with the wave period of the relevant sea area. Harmonic response analysis was performed using wave with a 1-year return period as the load. The proposed substructure had a reduced response magnitude at the same exciting force, and achieved weight reduction of more than 32%.

Evaluation of the Minimum Shear Reinforcement Ratio of Reinforced Concrete Members (철근콘크리트 부재의 최소전단보강근비의 평가)

  • Lee Jung-Yoon;Yoon Sung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.43-53
    • /
    • 2004
  • The current Korean Concrete Design Code(KCI Code) requires the minimum and maximum content of shear s in order to prevent brittle and noneconomic design. However, the required content of the steel reinforcement In KCI Code is quite different to those of the other design codes such as fib-code, Canadian Code, and Japanese Code. Furthermore, since the evaluation equations of the minimum and maximum shear reinforcement for the current KCI Code were based on the experimental results, the equations can not be used for the RC members beyond the experimental application limits. The concrete tensile strength, shear stress, crack inclination, strain perpendicular to the crack, and shear span ratio are strongly related to the lower and upper limits of shear reinforcement. In this research, an evaluation equation for the minimum content of shear reinforcement is theoretical proposed from the Wavier's three principals of the mechanics of materials.

The Growth of Tomato Transplants Influenced by the Air Temperature during Transportation (운송시 온도 조건에 따른 토마토묘의 정식 후 생육)

  • Jang, Yoonah;Mun, Boheum;Jeong, Sun Jin;Choi, Jang-Jeon;Park, Dong Kum
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • High quality transplants are critical for success in crop production. Increasing numbers of growers purchase their transplants from specialized transplant producers instead of growing their own transplants. A drawback of purchasing transplants is the risk of deterioration to transplants during transportation from transplant producers to the growers. This study evaluates the influence of temperature on the quality of grafted tomatoes transplants (Solanum lycopersicum cv. Super Doterang), in order to propose optimum temperature condition for the transportation of grafted tomato transplants. Grafted tomato transplants with visible flower trusses were exposed to different air temperature ($10^{\circ}C$, $25^{\circ}C$, or $40^{\circ}C$) for 2, 4, or 6 hours. After treatment, the NDVI (Normalized Difference Vegetation Index) values of tomato transplants treated at 25 and $40^{\circ}C$ were lower than that at $10^{\circ}C$. The root fresh weight was lowest at $40^{\circ}C$. After transplanting, the transplants that were exposed to the air temperature of $40^{\circ}C$ exhibited chlorosis and blight on lower leaves. The degree of damage on leaves was severer as the high temperature exposure time was longer. The temperature conditions during the transportation also influenced the growth, flowering and fruit set of tomatoes after transplanting. The fruit number and weight of first truss was lowest at $40^{\circ}C$ for 6 hours. Accordingly, it is recommended that the temperature during the transportation should be controlled and kept at the range from 10 to $25^{\circ}C$ even though the period is short (within as six hours) in order to maintain the quality of transplants.

The Effects of High Air Temperature and Waterlogging on the Growth and Physiological Responses of Hot Pepper (고온 및 침수에 의한 고추의 생육 및 생리적 반응에 미치는 영향)

  • Lee, Hee Ju;Park, Sung Tae;Kim, Sung Kyeom;Choi, Chang Sun;Lee, Sang Gyu
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • This study was conducted to investigate the effects of waterlogging on the net photosynthetic rate, root activity and fruit yield of hot pepper. Plants were grown in two greenhouses: extractor fans and side ventilators began to operate when the inside temperature reached $25^{\circ}C$ in one greenhouse and $35^{\circ}C$ in the other. Waterlogging treatments were performed 54 days after transplanting (when fruit setting at the second flower truss was complete). The plot in each greenhouse was divided into five sections, and each section was watered for 0, 12, 24, 48 or 72 h using drip irrigation. Plants under $25^{\circ}C$ and non - waterlogging treatment exhibited in the greatest growth among treatments. Plant growth generally decreased as the waterlogging period increased. The net photosynthetic rate was highest under non - waterlogging and $25^{\circ}C$ treatment and lowest under 72 h waterlogging and $25^{\circ}C$ treatment. The root activity decreased as the waterlogging period increased, except for plants under 72 h waterlogging treatment at $35^{\circ}C$. The number and weight of red pepper fruits per plant were highest under non - waterlogging treatment at $35^{\circ}C$. The greatest fruit yield was also observed under non - waterlogging treatment at $35^{\circ}C$, with production reaching 3,697 kg / 10a. At the appropriate temperature for hot pepper ($25^{\circ}C$), yields were reduced by 25 - 30% under 12, 24 and 48 h waterlogging treatment compared to non - waterlogging treatment. These results indicate that longer waterlogging periods reduce the growth, net photosynthetic rate, root activity and yields of hot pepper. However, the net photosynthetic rate and stomatal conductance of hot pepper plants grown under 72 h waterlogging treatment recovered nine days after growth under normal growth conditions.