DOI QR코드

DOI QR Code

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (I) Proposal of Load Distribution Ratios

단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율- (I) 하중분배율의 제안

  • 김병헌 (콜로라도대학교 토목공학과) ;
  • 윤영묵 (경북대학교 건축토목공학부)
  • Received : 2007.07.18
  • Accepted : 2007.09.11
  • Published : 2008.03.31

Abstract

The ultimate strengths of reinforced concrete deep beams are governed by the capacity of the shear resistance mechanism composed of concrete and shear reinforcing bars, and the structural behaviors of the beams are mainly controlled by the mechanical relationships according to the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of simply supported reinforced concrete deep beams. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the design of simply supported reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of a load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the prime design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete influencing the ultimate strength and behavior are reflected upon based on various and numerous numerical analysis results. In the companion paper, the validity of presented model and load distribution ratio was examined by employing them to the evaluation of the ultimate strengths of various simply supported reinforced concrete deep beams tested to failure.

철근콘크리트 깊은 보는 콘크리트와 전단철근에 의한 전단저항 메커니즘의 성능에 의해 극한강도가 지배된다. 깊은 보의 거동은 전단지간대 유효깊이의 비, 휨철근비, 하중점과 지지점의 조건, 그리고 사용재료의 성질 등의 여러 변수간의 복합적인 역학관계로 인해 매우 복잡하다. 본 논문에서는 이러한 깊은 보의 강도 및 거동 특성을 모두 반영하여 단순지지 철근콘크리트 깊은 보의 설계를 수행할 수 있는 부정정 스트럿-타이 모델을 제안하였다. 또한 현 스트럿-타이 모델 설계기준을 부정정 스트럿-타이 모델을 이용한 단순지지 철근콘크리트 깊은 보의 설계에 합리적으로 적용하기 위해 수직 트러스 메커니즘에 의해 전달되는 하중의 크기 즉 부정정 스트럿-타이 모델의 하중분배율을 제안하였다. 하중분배율의 결정 시 단순지지 철근콘크리트 깊은 보의 전단에 대한 연성파괴거동을 확보하기 위하여 깊은 보의 전단저항 메커니즘을 구성하는 콘크리트 스트럿과 수직철근 타이가 동시에 파괴된다는 전단평형철근비 개념을 도입하였으며, 다양한 수치해석결과를 바탕으로 단순지지 깊은 보의 강도 및 거동에 영향을 미치는 전단지간대 유효깊이의 비, 휨철근비, 그리고 콘크리트의 압축강도 등의 설계변수를 고려하였다. 본 논문의 후속편에서는 기존의 여러 설계방법들과 본 연구에서 제안한 방법을 이용하여 파괴실험이 수행된 다양한 종류의 단순지지 깊은 보의 강도를 평가하고, 본 연구에서 제안한 방법의 적합성을 검증하였다.

Keywords

References

  1. 김우, 정제평, 김대중(2003a) 휨과 전단이 작용하는 RC 부재의 해석을 위한 비-베르누이-적합 트러스 모델링 기법 연구(I), 대한토목학회 논문집, 대한토목학회, 제23권 제6호, pp. 1247-1256
  2. 김우, 정제평, 박대성(2003b) 휨과 전단이 작용하는 RC 부재의 해석을 위한 비-베르누이-적합 트러스 모델링 기법 연구(II), 대한토목학회 논문집, 대한토목학회, 제23권 제6호, pp. 1257-1266
  3. 박홍근, 김윤곤, 엄태성(2005) 할선강성을 이용한 직접 비탄성 스트럿-타이 모델, 한국콘크리트학회 논문집, 한국콘크리트학회, 제17권 제2호, pp. 201-212
  4. 윤영묵 (2002) 철근콘크리트 보의 비선형 스트럿-타이 모델 해석, 대한토목학회 논문집, 대한토목학회, 제22권 제5호, pp. 1153-1163
  5. Alshegeir, A. (1992) Analysis and Design of Disturbed Regions with Strut-Tie Models, Ph.D Dissertation, School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
  6. American Association of State Highway and Transportation Officials (2007) AASHTO LRFD Bridge Design Specifications, 2nd edition, Washington, D.C., USA
  7. American Concrete Institute (1999) Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99), Farmington Hills, Michigan, USA
  8. American Concrete Institute (2005) Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), Farmington Hills, Michigan, USA
  9. ACI Subcommittee 445-1 (2002) Examples for the Design for Structural Concrete with Strut-and-Tie Models; SP-208, Reineck R. H. eds, American Concrete Institute, Michigan, USA
  10. Bakir, P.G. and Boduroglu, H.M. (2005) Mechanical Behaviour and Non-linear analysis of Short Beams using Softened Truss and Direct Strut & Tie Models, Engineering Structures, Elsvier Ltd, Vol. 27, No. 4, pp. 639-651 https://doi.org/10.1016/j.engstruct.2004.12.003
  11. Bazant, Z.P. (1997) Fracturing Truss Model: Size Effect in Shear Failure of Reinforced Concrete, Journal of Engineering Mechanics, ASCE, Vol. 123, No. 12, pp. 1276-1288 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1276)
  12. British Standards Institution (1997) Code of Practice for Design and Construction (BS8110 Part I), British Standard, UK
  13. Canadian Standards Association (1984) Design of Concrete Structures for Buildings, CAN3-A23.3-M84, Rexdale, Ontario, Canada
  14. Concrete Design Committee (1995) The Design of Concrete(NZS 3101: Part I and II), New Zealand Standard, New Zealand
  15. Eurocode 2 (1992) Design of Concrete Strutcures, Part I: General Rules and Rules for buildings(DD ENV 1992-1-1), Commission of the European Communities, UK
  16. Foster, S.J. and Gilbert, R.I. (1998) Experimental Studies on High-Strength Concrete Deep Beams, ACI Structural Journal, Vol. 95, No. 4, pp. 382-390
  17. Hwang, S.J., Lu, W.Y., and Lee, H.J. (2000) Shear Strength Prediction for Deep Beams, ACI Structural Journal, Vol. 97, No. 3, pp. 367-376
  18. The International Federation for Structural Concrete(fib) (1999) Structural Concrete; Textbook on Behavior, Design and Performance Updated Knowledge of the CEB/FIP Model Code 1999 Volume 3, The International Federation for Structural Concrete(fib), Lausanne, Switzerland
  19. Leonhardt, F. (1965) Reducing the Shear Reinforcement in Reinforced Concrete Beams and Slabs, Magazine of Concrete Research, Vol. 17, No. 53, pp. 187-198 https://doi.org/10.1680/macr.1965.17.53.187
  20. Niwa, J., Yamada, K., Yokozawa, K., and Okamura, M. (1986) Revaluation of the Equation for Shear Strength of R.C.-Beams without Web Reinforcement, Proceeding of Japan Society of Civil Engineering, pp. 1986-1988
  21. Okamura, H. and Higai, T. (1980) Proposed Design Equation for Shear Strength of R.C. Beams without Web Reinforcement, Proceeding of Japan Society of Civil Engineering, pp. 131-141
  22. Pang, X.B. and Hsu, T.T.C. (1995) Behavior of Reinforced Concrete Membrance Elements in Shear, ACI Structural Journal, Vol. 92, No. 6, pp. 665-679
  23. Park, R. and Paulay, T (1970) Reinforced Concrete Structures, Wiley, N.Y.
  24. Shin, S.W., Lee, K.S., Moon, J., and Ghosh, S.K. (1999) Shear Strength of Reinforced High-strength Concrete Beams with Shear Span-to-Depth Ratios between 1.5 and 2.5, ACI Structural Journal, Vol. 96, No. 4, pp. 549-556
  25. Smith, K.M. and Vantsiotis, A.S. (1982) Shear Strength of Deep Beams, ACI Material Journal, Vol. 79, No. 3, pp. 201-213
  26. Tjhin, T.N. and Kuchma, D.A. (2002) Computer-based Tools for Design by Strut-and-tie Method: Advances and Challenges, ACI Structural Journal, Vol. 99, No. 5, pp. 586-594
  27. Yun, Y.M. (2000) Nonlinear Strut-Tie Model Approach for Structural Concrete, ACI Structural Journal, Vol. 97, No. 4 pp. 581-590
  28. Zararis P.D. (2003) Shear Compression Failure in Reinforced Concrete Deep Beams, Journal of Structural Engineering, ASCE, Vol. 129, No. 4, pp. 544-553 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(544)
  29. Zsutty, T.C. (1971) Shear strenght prediction for Separate Categories of Simple Beam Tests, ACI Journal, Vol. 68, No. 2, pp. 138-143