DOI QR코드

DOI QR Code

Establishment of a Standard Procedure for Safety Inspections of Bridges Using Drones

드론 활용 교량 안전점검을 위한 표준절차 정립

  • 이석배 (경상국립대학교 건설환경공과대학 건설시스템공학과) ;
  • 이기홍 (브리콘랩) ;
  • 최현민 ((주)니어스랩) ;
  • 임치성 (국토안전관리원 안전성능연구소 기술개발실)
  • Received : 2021.11.08
  • Accepted : 2021.12.22
  • Published : 2022.04.01

Abstract

In Korea, the number of national facilities for which a safety inspection is mandatory is increasing, and a safer safety inspection method is needed. This study aimed to increase the efficiency of the bridge safety inspection by enabling rapid exterior inspection while securing the safety of inspectors by using drones to perform the safety inspections of bridges, which had mainly relied on visual inspections. For the research, the Youngjong Grand Bridge in Incheon was selected as a test bed and was divided into four parts: the warren truss, suspension bridge main cable, main tower, and pier. It was possible to establish a five-step standard procedure for drone safety inspections. The step-by-step contents of the standard procedure obtained as a result of this research are: Step 1, facility information collection and analysis, Step 2, analysis of vulnerable parts and drone flight planning, Step 3, drone photography and data processing, Step 4, condition evaluation by external inspection, Step 5, building of external inspection diagram and database. Therefore, if the safety inspections of civil engineering facilities including bridges are performed according to this standard procedure, it is expected that these inspection can be carried out more systematically and efficiently.

우리나라는 안전점검을 의무적으로 시행하여야 하는 국가시설물이 증가하고 있으며, 또한 보다 안전한 안전점검 방법이 필요한 시점이다. 본 연구는 주로 육안조사에 의존하던 교량의 안전점검을 드론을 활용하여 수행함으로써 점검자의 안전을 확보하고 신속한 외관조사가 가능하게 함으로써 교량 안전점검 외관조사의 효율성을 높이고자 하였다. 연구를 위하여 인천의 영종대교를 테스트베드로 선정하고 와렌 트러스 부분, 현수교 메인 케이블, 주탑, 교각의 네 부분으로 나누어 드론 촬영을 실시하고 성과물을 제작하였으며 그 과정에서의 작업 내용들을 정리하고 분석하여 교량시설물에 대한 드론 안전점검시 다섯 단계의 표준절차를 정립할 수 있었다. 연구결과로 얻어진 표준절차의 단계별 내용은 1단계, 시설물 정보수집 및 분석, 2단계, 취약부 분석 및 비행계획, 3단계, 드론 촬영 및 데이터 처리, 4단계, 외관조사 상태평가, 5단계, 외관조사망도 및 DB 구축이다. 따라서 이 표준절차에 따라 교량을 포함한 토목시설물의 안전점검이 수행된다면 보다 체계적이고 효율적으로 안전점검을 수행해 나갈 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 국토안전관리원의 2020~2021년도 연구용역사업 「드론을 활용한 시설물 안전점검 매뉴얼 및 표준품셈(안) 개발연구용역」(No.20200610FF0-00)에 의하여 수행되었으며 이에 감사드립니다.

References

  1. Bang, S. D., Kim, H. J. and Kim, H. K. (2017). "Vision-based 2D map generation for monitoring construction sites using UAV Videos." 2017 Proceedings of the 34rd ISARC, ISARC, The International Association for Automation and Robotics in Constructionpp, Taipei, Taiwan, pp. 1-4.
  2. Chen, S., Laefor, D. F., Asce, M., Mangina, E., Zolanvari, S. M. I. and Byrne, J. (2019). "UAV bridge inspection through evaluated 3D reconstruction." Journal of Bridge Engineering, Vol. 24, No. 4.
  3. Cho, J. H. (2014). Accuracy and economic feasibility study of orthoimage map production using UAV, Master Thesis, University of Seoul (in Korean).
  4. Chris, H. H., Jordan, M. W., Owen, B. and Steve, M. A. (2015). "Earthwork volumetrics with an unmanned aerial vehicle and softcopy photogrammetry." Journal of Surveying Engineering, ASCE, Vol. 141, No. 1.
  5. Han, D. Y., Lee, S. B., Song, M. H. and Cho, J. S. (2021). "Change detection in unmanned aerial vehicle images for progress monitoring of road construction." Buildings, Vol. 11, No. 4, pp. 1-14.
  6. Julge, K., Ellmann, A. and Kook, R. (2019). "Unmanned aerial vehicle surveying for monitoring road construction earthworks." The Baltic Journal of Road and Bridge Engineering, Vol. 14, No. 1, pp. 1-17. https://doi.org/10.7250/bjrbe.2019-14.430
  7. Jung, S. H., Lim, H. M. and Lee, J. K. (2010). "Acquisition of 3D spatial information using UAV photogrammetric method." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 28, No. 1, pp. 161-168 (in Korean).
  8. Kim, T. W., Hong, S. H., Choi, H. and Lee, K. H. (2018). "Efficient extraction of road cross section using a UAV." Journal of Korean Society for Geospatial Information Science, Vol. 26, No. 1, pp. 69-75 (in Korean). https://doi.org/10.7319/kogsis.2018.26.1.069
  9. Korea Agency for Infrastructure Technology Advancement (KAIA) (2019). Development of rapid diagnosis and evaluation technology for bridge structures based on unmanned inspection equipment, Construction Technology Research Project 4th Year Final Report No. 11-B350021-000058-01.
  10. Lee, J. O., Lee, S. B., Kim, S. G. and Lee, K. H. (2018). "Development of standard work type in construction field to utilize unmanned aerial vehicle." Journal of Korean Society for Geospatial Information Science, Vol. 26, No. 3, pp. 69-76 (in Korean). https://doi.org/10.7319/kogsis.2018.26.3.069
  11. Lee, S. B., Kim, T. J., Ahn, Y. J. and Lee, J. O. (2019). "Comparison of digital maps created by stereo plotting and vectorization based on images acquired by unmanned aerial vehicle." Sensors and Materials, Vol. 31, No. 11, pp. 3797-3810. https://doi.org/10.18494/SAM.2019.2553
  12. Lee, S. B., Song, M. H., Kim, S. G. and Won, J. H. (2020a). "Change monitoring at expressway infrastructure construction sites using drone." Sensors and Materials, Vol. 32, No. 11, pp. 3923-3933. https://doi.org/10.18494/SAM.2020.2971
  13. Lee, S. B., Won, J. H., Jung, K.Y., Song, M. H. and Ahn, Y. J. (2020b). "Digital elevation model production using point cloud acquired by unmanned aerial vehicles." Sensors and Materials, Vol. 32, No. 12, pp. 4347-4360. https://doi.org/10.18494/SAM.2020.2973
  14. Lucieer, A., de Jong, S. and Turner, D. (2014). "Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography." Progress in Physical Geography, Vol. 38, pp. 97-116. https://doi.org/10.1177/0309133313515293
  15. Ministery of Land, Infrastructure and Transport (MOLIT) (2021). Special act on safety and maintenance of facilities, Law No. 17946.
  16. Morgenthal, G. and Hallermann, N. (2014). "Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures." Advances in Sructural Engineering, Vol. 17, No. 3, pp. 289-302. https://doi.org/10.1260/1369-4332.17.3.289
  17. National Geographic Information Institute (NGII) (2018). Guidelines for the public survey using UAV, NGII Guidelines No. 2018-1075 (in Korean).
  18. Niethammer, U., James, M. R., Rothmund, S., Travelletti, J. and Joswig, M. (2012). "UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results." Engineering Geology, Vol. 128, pp. 2-11. https://doi.org/10.1016/j.enggeo.2011.03.012
  19. Oregon Department of Transportation (2018). Eyes in the sky: Bridge inspections with unmanned aerial vehicles, Final Report, SPR 787.
  20. Park, H. Y., Lee, K. M., Han, M. H. and Kim, S. J. (2019). "Structure safety inspection using drones." Journal of the Korean Assosiation for Spatial Structure, Vol. 19, No. 4, pp. 8-13 (in Korean).
  21. Presidential Advisory Council on Science and Technology (PACST) (2018). 2018 Science and technology advisory report.
  22. Rhee, S. and Kim, T. (2017). "Investigation of 1:1,000 scale map generation by stereo plotting using UAV images." The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, 2016 ISPRS International Conference on UAV in Geomatics, Bonn, Germany, Volume XLII-2/W6, pp. 319-324.
  23. Seo, J. W., Duque, L. and Wacker, J. (2018). "Drone-enabled bridge inspection methodology and application." Automation in Construction, Vol. 94, pp. 112-126. https://doi.org/10.1016/j.autcon.2018.06.006
  24. Siebert, S. and Teizer, J. (2014). "Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system." Automation in Construction, Vol. 41, pp. 1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  25. Wang, X., Al-Shabbani, Z., Sturgill, R., Kirk, A. and Dadi, G. B. (2017). "Estimating earthwork volumes through use of unmanned aerial systems." TRB Annual Meeting Promo Issue, Vol. 2630, pp. 1-8.
  26. Yu, M., Huang, Y., Zhou, J. and Liya, M. (2017). "Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion." Environmental Earth Science, Vol. 76, No. 15, pp. 1-9, DOI: https://doi.org/10.1007/s12665-017-6860-x.