• Title/Summary/Keyword: Tritium breeding ratio

Search Result 9, Processing Time 0.026 seconds

Design and simulation of a blanket module with high efficiency cooling system of tokamak focused on DEMO reactor

  • Sadeghi, H.;Amrollahi, R.;Zare, M.;Fazelpour, S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.323-327
    • /
    • 2020
  • In this study, the neutronic calculation to obtain tritium breeding ratio (TBR) in a deuterium-tritium (D-T) fusion power reactor using Monte Carlo MCNPX is done. In addition, by using COMSOL software, an efficient cooling system is designed. In the proposed design, it is adequate to enrich up to 40% 6Li. Total tritium breeding ratio of 1.12 is achieved. The temperature of helium as coolant gas never exceed 687℃. As regards the tolerable temperature of beryllium (650℃), the design of blanket module is done in the way that beryllium temperature never exceed 600℃. The main feature of this design indicates the temperature of helium coolant is higher than other proposed models for blanket module, therefore power of electricity generation will increase.

HCCR breeding blankets optimization by changing neutronic constrictions

  • Zadfathollah Seighalani, R.;Sedaghatizade, M.;Sadeghi, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2564-2569
    • /
    • 2021
  • The neutronic analysis of Helium Cooled Ceramic Reflector (HCCR) breeding blankets has been performed using the 3D Monte Carlo code MCNPX and ENDF nuclear data library. This study aims to reduce 6Li percentage in the breeder zones as much as possible ensuring tritium self-sufficiency. This work is devoted to investigating the effect of 6Li percentage on the HCCR breeding blanket's neutronic parameters, such as neutron flux and spectrum, Tritium Breeding Ratio (TBR), nuclear power density, and energy multiplication factor. In the ceramic breeders at the saturated thickness, increasing the enrichment of 6Li reduces its share in the tritium production. Therefore, ceramic breeders typically use lower enriched Li from 30% to 60%. The investigation of neutronic analysis in the suggested geometry shows that using 60% 6Li in Li2TiO3 can yield acceptable TBR and energy deposition results, which would be economically feasible.

Neutronic investigation of waste transmutation option without partitioning and transmutation in a fusion-fission hybrid system

  • Hong, Seong Hee;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1060-1067
    • /
    • 2018
  • A feasibility of reusing option of spent nuclear fuel in a fusion-fission hybrid system without partitioning was checked as an alternative option of pyro-processing with critical reactor system. Neutronic study was performed with MCNP 6.1 for this option, direct reuse of spent PWR fuel (DRUP). Various options with DRUP fuel were compared with the reference design concept; transmutation purpose blanket with (U-TRU)Zr fuel loading connected with pyro-processing. Performance parameters to be compared are transmutation performance of transuranic (TRU) nuclides, required fusion power and tritium breeding ratio (TBR). When blanket part is loaded only with DRUP, initial $k_{eff}$ level becomes too low to maintain a practical subcritical system, increasing the required fusion power. In this case, production rate of TRU nuclides exceeds the incineration rate. Design optimization is done for combining DRUP fuel with (U-TRU)Zr fuel. Reactivity swing is reduced to about 2447 pcm through fissile breeding compared to (U-TRU)Zr fuel option. Therefore, a required fusion power is reduced and tritium breeding performance is improved. However, transmutation performance with TRU nuclides especially $^{241}Am$ is degraded because of softening effect of spectrum. It is known that partitioning and transmutation should be accompanied with fusion-fission hybrid system for the effective transmutation of TRU.

Shield Material Consideration in the LAR Tokamak Reactor

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.314-314
    • /
    • 2010
  • For the optimal design of a tokamak-type reactor, self-consistent determination of a radial build of reactor systems is important and the radial build has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor systems. In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the shield should provide sufficient protection for the superconducting TF coil and the shield plays a key role in determining the size of a reactor. To determine the radial build of a reactor, neutronic effects such as tritium breeding in the blanket, nuclear heating, and radiation damage to toroidal field (TF) coil has to be included in the systems analysis. In this work, the outboard blanket only is considered where tritium self-sufficiency is possible by using an inboard neutron reflector instead of breeding blanket. The reflecting shield should provide not only protection for the superconducting TF coil but also improved neutron economy for the tritium breeding in outboard blanket. Tungsten carbide, metal hydride such as titanium hydride and zirconium hydride can be used for improved shielding performance and thus smaller shield thickness. With the use of advanced technology in the shield, conceptual design of a compact superconducting LAR reactor with aspect ratio of less than 2 will be presented as a viable power plant.

  • PDF

Monte Carlo analysis of LWR spent fuel transmutation in a fusion-fission hybrid reactor system

  • Sahin, Sumer;Sahin, Haci Mehmet;Tunc, Guven
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1339-1348
    • /
    • 2018
  • The aim of this paper is to determine neutronic performances of the light water reactor (LWR) spent fuel mixed with fertile thorium fuel in a FFHR. Time dependent three dimensional calculations for major technical data, such as blanket energy multiplication, tritium breeding ratio, cumulative fissile fuel enrichment and burnup have been performed by using Monte Carlo Neutron-Particle Transport code MCNP5 1.4, coupled with a novel interface code MCNPAS, which is developed by our research group. A self-sustaining tritium breeding ratio (TBR>1.05) has been kept throughout the calculations. The study has shown that the fissile fuel quality will be improved in the course of the transmutation of the LWR spent in the FFHR. The latter has gained the reusable fuel enrichment level conventional LWRs between one and two years. Furthermore, LWR spent fuel - thorium mixture provides higher burn-up values than in light water reactors.

저형상비 토카막 중성자원에 기반한 핵변환로 형상 연구

  • Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.414.2-414.2
    • /
    • 2016
  • The optimal configuration of a transmutation reactor based on a low aspect ratio tokamak is determined using coupled analysis of tokamak systems and neutron transport. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on a neutron multiplication, a tritium-breeding ratio, and a power density. It is shown that a breeding blanket model has an impact on the radial build of a transmutation blanket. A burn cycle has to be determined to limit a fast neutron fluence of a plasma facing material below a radiation damage limit.

  • PDF

Validation of the neutron lead transport for fusion applications

  • Schulc, Martin;Kostal, Michal;Novak, Evzen;Czakoj, Tomas;Simon, Jan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.959-964
    • /
    • 2022
  • Lead is an important material, both for fusion or fission reactors. The cross sections of natural lead should be validated because lead is a main component of lithium-lead modules suggested for fusion power plants and it directly affects the crucial variable, tritium breeding ratio. The presented study discusses a validation of the lead transport libraries by dint of the activation of carefully selected activation samples. The high emission standard 252Cf neutron source was used as a neutron source for the presented validation experiment. In the irradiation setup, the samples were placed behind 5 and 10 cm of the lead material. Samples were measured using a gamma spectrometry to infer the reaction rate and compared with MCNP6 calculations using ENDF/B-VIII.0 lead cross sections. The experiment used validated IRDFF-II dosimetric reactions to validate lead cross sections, namely 197Au(n, 2n)196Au, 58Ni(n,p)58Co, 93Nb(n, 2n)92mNb, 115In(n,n')115mIn, 115In(n,γ)116mIn, 197Au(n,γ)198Au and 63Cu(n,γ)64Cu reactions. The threshold reactions agree reasonably with calculations; however, the experimental data suggests a higher thermal neutron flux behind lead bricks. The paper also suggests 252Cf isotropic source as a valuable tool for validation of some cross-sections important for fusion applications, i.e. reactions on structural materials, e.g. Cu, Pb, etc.

Optimum Radial Build of a Low Aspect Ratio Tokamak Reactor

  • Hong, B.G.;Hwang, Y.S.;Kang, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.397-397
    • /
    • 2011
  • In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the radial build of TF coil and the shield play a key role in determining the size of a reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with one-dimensional radiation transport code. Conceptual design study of a compact superconducting LAR tokamak reactor with aspect ratio less than 2.5 was conducted and the optimum radial build was identified. It is shown that the use of an improved shielding material and high temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at low aspect ratio, and that by using an inboard neutron reflector instead of breeding blanket, tritium self-sufficiency is possible with outboard blanket only and thus compact sized reactor is viable.

  • PDF

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya;Adem Acir;Senay Yalcin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4287-4294
    • /
    • 2023
  • In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.