DOI QR코드

DOI QR Code

HCCR breeding blankets optimization by changing neutronic constrictions

  • Zadfathollah Seighalani, R. (Department of Physics, K. N. Toosi University of Technology) ;
  • Sedaghatizade, M. (Department of Physics, K. N. Toosi University of Technology) ;
  • Sadeghi, H. (Department of Physics and Energy Engineering, Amirkabir University of Technology)
  • Received : 2020.09.03
  • Accepted : 2021.02.15
  • Published : 2021.08.25

Abstract

The neutronic analysis of Helium Cooled Ceramic Reflector (HCCR) breeding blankets has been performed using the 3D Monte Carlo code MCNPX and ENDF nuclear data library. This study aims to reduce 6Li percentage in the breeder zones as much as possible ensuring tritium self-sufficiency. This work is devoted to investigating the effect of 6Li percentage on the HCCR breeding blanket's neutronic parameters, such as neutron flux and spectrum, Tritium Breeding Ratio (TBR), nuclear power density, and energy multiplication factor. In the ceramic breeders at the saturated thickness, increasing the enrichment of 6Li reduces its share in the tritium production. Therefore, ceramic breeders typically use lower enriched Li from 30% to 60%. The investigation of neutronic analysis in the suggested geometry shows that using 60% 6Li in Li2TiO3 can yield acceptable TBR and energy deposition results, which would be economically feasible.

Keywords

References

  1. M. Zucchetti, et al., Neutronics scoping studies for experimental fusion devices, Fusion Sci. Technol. vol. 75 (6) (2019) 423-428. https://doi.org/10.1080/15361055.2019.1613141
  2. E.A. Read, C.R.E. De Oliveira, A Functional Method for Estimating DPA Tallies in Monte Carlo Calculations of Light Water Reactors, Int. Conf. Math. Comput. Methods Appl. to Nucl. Sci. Eng. (M&C 2011), Rio Janeiro, RJ, Brazil, 2011.
  3. Y. Wu, Fusion Neutronics at UNED, Springer, Singapore, 2017, https://doi.org/10.1007/978-981-10-5469-3.
  4. R. Mozzillo, et al., Rationale and method for design of DEMO WCLL breeding blanket poloidal segmentation, Fusion Eng. Des. vol. 124 (2017) 664-668, https://doi.org/10.1016/j.fusengdes.2017.01.039.
  5. T. Tanabe, Tritium: Fuel of Fusion Reactors, Springer, 2017.
  6. B.G. Hong, Impact of neutronic constraints on the design and performance of a tokamak DEMO reactor, Fusion Eng. Des. vol. 155 (2020), 111567, https://doi.org/10.1016/j.fusengdes.2020.111567.
  7. U. Fischer, et al., Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant, Fusion Eng. Des. vol. 109-111 (2016) 1458-1463, https://doi.org/10.1016/j.fusengdes.2015.11.051.
  8. J. Aubert, G. Aiello, P. Arena, T. Barrett, L. Virgilio, Status of the EU DEMO HCLL Breeding Blanket Design Development Status of the EU DEMO HCLL Breeding Blanket Design Development, 2018, https://doi.org/10.1016/j.fusengdes.2018.04.133.
  9. E. Martelli, et al., Advancements in DEMO WCLL breeding blanket design and integration, Int. J. Energy Res. vol. 42 (1) (2018) 27-52, https://doi.org/10.1002/er.
  10. I. Palermo, I. Fernandez, D. Rapisarda, A. Ibarra, Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant, Fusion Eng. Des. vol. 109 (2016) 13-19, https://doi.org/10.1016/j.fusengdes.2016.03.065.
  11. P. Pereslavtsev, U. Fischer, F. Hernandez, L. Lu, Neutronic analyses for the optimization of the advanced HCPB breeder blanket design for DEMO, Fusion Eng. Des. vol. 124 (633053) (2017) 910-914, https://doi.org/10.1016/j.fusengdes.2017.01.028.
  12. S. Yun, et al., Conceptual design and analysis of the HCCR breeder blanket for the K-DEMO, Fusion Eng. Des. vol. 153 (2020), 111513, https://doi.org/10.1016/j.fusengdes.2020.111513.
  13. S. Cho, et al., Neutronic assessment of HCCR breeding blanket for DEMO, Fusion Eng. Des. 146 (2019) 1338-1342. https://doi.org/10.1016/j.fusengdes.2019.02.071
  14. D.B. Pelowitz, MCNPXTM user's manual, version 2.6. 0-LA-CP-07-1473, Los Alamos Natl. Lab (2008).
  15. K. Kim, et al., Design concept of K-DEMO for near-term implementation, Nucl. Fusion vol. 55 (5) (2015) 53027, https://doi.org/10.1088/0029-5515/55/5/053027.
  16. P. Pereslavtsev, C. Bachmann, U. Fischer, Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts, Fusion Eng. Des. vol. 109-111 (Nov. 2016) 1207-1211, https://doi.org/10.1016/J.FUSENGDES.2015.12.053.
  17. Z. Shanliang, W. Yican, S. Zheng, Y. Wu, Neutronic comparison of tritium-breeding performance of candidate tritium-breeding materials, Plasma Sci. Technol. vol. 5 (5) (2003) 1995, https://doi.org/10.1088/1009-0630/5/5/011.
  18. U. Von Moellendorff, et al., Measurements of 14 MeV neutron multiplication in spherical beryllium shells, Fusion Eng. Des. vol. 28 (1995) 737-744. https://doi.org/10.1016/0920-3796(94)00260-E
  19. D. McMorrow, Tritium, MITRE CORP MCLEAN VA, 2011.