Browse > Article
http://dx.doi.org/10.1016/j.net.2021.02.016

HCCR breeding blankets optimization by changing neutronic constrictions  

Zadfathollah Seighalani, R. (Department of Physics, K. N. Toosi University of Technology)
Sedaghatizade, M. (Department of Physics, K. N. Toosi University of Technology)
Sadeghi, H. (Department of Physics and Energy Engineering, Amirkabir University of Technology)
Publication Information
Nuclear Engineering and Technology / v.53, no.8, 2021 , pp. 2564-2569 More about this Journal
Abstract
The neutronic analysis of Helium Cooled Ceramic Reflector (HCCR) breeding blankets has been performed using the 3D Monte Carlo code MCNPX and ENDF nuclear data library. This study aims to reduce 6Li percentage in the breeder zones as much as possible ensuring tritium self-sufficiency. This work is devoted to investigating the effect of 6Li percentage on the HCCR breeding blanket's neutronic parameters, such as neutron flux and spectrum, Tritium Breeding Ratio (TBR), nuclear power density, and energy multiplication factor. In the ceramic breeders at the saturated thickness, increasing the enrichment of 6Li reduces its share in the tritium production. Therefore, ceramic breeders typically use lower enriched Li from 30% to 60%. The investigation of neutronic analysis in the suggested geometry shows that using 60% 6Li in Li2TiO3 can yield acceptable TBR and energy deposition results, which would be economically feasible.
Keywords
DEMOnstration tokamak; HCCR breeding blanket; Neutronic analysis; TBR; Energy deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wu, Fusion Neutronics at UNED, Springer, Singapore, 2017, https://doi.org/10.1007/978-981-10-5469-3.
2 B.G. Hong, Impact of neutronic constraints on the design and performance of a tokamak DEMO reactor, Fusion Eng. Des. vol. 155 (2020), 111567, https://doi.org/10.1016/j.fusengdes.2020.111567.   DOI
3 E. Martelli, et al., Advancements in DEMO WCLL breeding blanket design and integration, Int. J. Energy Res. vol. 42 (1) (2018) 27-52, https://doi.org/10.1002/er.   DOI
4 S. Yun, et al., Conceptual design and analysis of the HCCR breeder blanket for the K-DEMO, Fusion Eng. Des. vol. 153 (2020), 111513, https://doi.org/10.1016/j.fusengdes.2020.111513.   DOI
5 K. Kim, et al., Design concept of K-DEMO for near-term implementation, Nucl. Fusion vol. 55 (5) (2015) 53027, https://doi.org/10.1088/0029-5515/55/5/053027.   DOI
6 U. Von Moellendorff, et al., Measurements of 14 MeV neutron multiplication in spherical beryllium shells, Fusion Eng. Des. vol. 28 (1995) 737-744.   DOI
7 E.A. Read, C.R.E. De Oliveira, A Functional Method for Estimating DPA Tallies in Monte Carlo Calculations of Light Water Reactors, Int. Conf. Math. Comput. Methods Appl. to Nucl. Sci. Eng. (M&C 2011), Rio Janeiro, RJ, Brazil, 2011.
8 Z. Shanliang, W. Yican, S. Zheng, Y. Wu, Neutronic comparison of tritium-breeding performance of candidate tritium-breeding materials, Plasma Sci. Technol. vol. 5 (5) (2003) 1995, https://doi.org/10.1088/1009-0630/5/5/011.   DOI
9 D. McMorrow, Tritium, MITRE CORP MCLEAN VA, 2011.
10 M. Zucchetti, et al., Neutronics scoping studies for experimental fusion devices, Fusion Sci. Technol. vol. 75 (6) (2019) 423-428.   DOI
11 R. Mozzillo, et al., Rationale and method for design of DEMO WCLL breeding blanket poloidal segmentation, Fusion Eng. Des. vol. 124 (2017) 664-668, https://doi.org/10.1016/j.fusengdes.2017.01.039.   DOI
12 T. Tanabe, Tritium: Fuel of Fusion Reactors, Springer, 2017.
13 P. Pereslavtsev, U. Fischer, F. Hernandez, L. Lu, Neutronic analyses for the optimization of the advanced HCPB breeder blanket design for DEMO, Fusion Eng. Des. vol. 124 (633053) (2017) 910-914, https://doi.org/10.1016/j.fusengdes.2017.01.028.   DOI
14 U. Fischer, et al., Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant, Fusion Eng. Des. vol. 109-111 (2016) 1458-1463, https://doi.org/10.1016/j.fusengdes.2015.11.051.   DOI
15 J. Aubert, G. Aiello, P. Arena, T. Barrett, L. Virgilio, Status of the EU DEMO HCLL Breeding Blanket Design Development Status of the EU DEMO HCLL Breeding Blanket Design Development, 2018, https://doi.org/10.1016/j.fusengdes.2018.04.133.
16 I. Palermo, I. Fernandez, D. Rapisarda, A. Ibarra, Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant, Fusion Eng. Des. vol. 109 (2016) 13-19, https://doi.org/10.1016/j.fusengdes.2016.03.065.   DOI
17 S. Cho, et al., Neutronic assessment of HCCR breeding blanket for DEMO, Fusion Eng. Des. 146 (2019) 1338-1342.   DOI
18 D.B. Pelowitz, MCNPXTM user's manual, version 2.6. 0-LA-CP-07-1473, Los Alamos Natl. Lab (2008).
19 P. Pereslavtsev, C. Bachmann, U. Fischer, Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts, Fusion Eng. Des. vol. 109-111 (Nov. 2016) 1207-1211, https://doi.org/10.1016/J.FUSENGDES.2015.12.053.   DOI