• 제목/요약/키워드: Tripping characteristics

검색결과 41건 처리시간 0.023초

평판 경계층 유동조건이 근접후류에 미치는 영향 (Influence of Flow Conditions on a Boundary Layer to the Near-Wake of a Flat Plat)

  • 김동하;장조원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1625-1630
    • /
    • 2004
  • An experimental study was carried out to investigate influence of flow conditions on a boundary layer to the near-wake of a flat plate. The flow condition in the vicinity of trailing edge that is influenced by upstream condition history is an essential factor that determines the physical characteristics of a near-wake. Various tripping wires were used to change boundary layer flow condition of upstream at the freestream velocity of 6.0 m/sec. Measurements of the boundary layer and near-wake according to the change of upstream conditions were conducted by using both I-probe(55P14 for boundary layer) and X-probe(55P61 for wake). Normalized velocity profiles of the boundary layer were shown the flow types such as laminar boundary layer, transition, and turbulent boundary layer at 0.95C from the leading edge. The velocity and turbulence intensity profiles of the near-wake for the case of laminar boundary layer at the flat plate surface exhibited a defect and a double peak showing perfect symmetry, respectively.

  • PDF

과도성분과 상태도를 이용한 거리 계전기의 향상된 Zone 3 알고리즘 (An Enhanced Zone 3 Algorithm of a Distance Relay using Transient Components and State Diagram)

  • 허정용;김철환;박남옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.245-247
    • /
    • 2003
  • Zone 3 of the distance relay is used to provide the remote back-up protection in case of the failure of the primary protection. However, the risk for mal-operations under stressed conditions such as heavy loading, voltage and transient instability is usually high. Zone 3 is used in combination with the derivatives of the voltage, and current, etc to prevent mal-operations. Sometimes, the impedance characteristics that restrict the tripping area of relay are used to avoid the mal-operations due to load encroachment. This paper presents a novel zone 3 scheme based on combining the steady-state components(i.e. 60Hz) and the transient components(TCs) using a state diagram that visualizes the sequence of studies that emanate from the sequence of events. The simulation results show that the novel zone 3 distance relay elements using the proposed method operates correctly for the various events.

  • PDF

사무용 빌딩에서의 전압 및 전류파형 왜곡특성 분석 (Analysis of Volatage and Current Waveform Distortion Characteristics at Office Buildings)

  • 유재근;이상익;전정채;정종욱;임용배
    • 조명전기설비학회논문지
    • /
    • 제19권1호
    • /
    • pp.155-161
    • /
    • 2005
  • 사무용 빌딩의 비선형 전자부하에 기인한 전압 및 전류파형의 왜곡은 중성선의 과열, 변압기 손실, 누전차단기 오동작 등을 야기 시킨다. 본 논문에서는 사무용 빌딩에서의 전압 및 전류 고조파의 크기, 전압 및 전류 파고율(Crest Factor : CF), 전압 및 전류 불평형 등을 비교함으로써 파형왜곡 특성을 분석하였다. 분석 결과, 고조파에 의한 상 및 중성선에서의 심각한 파형 왜곡 문제와 삼상에서의 단상 부하의 부적절한 분배로 인한 전류 불평형이 심한 빌딩이 조사되었다. 본 연구 결과는 사무용 빌딩에서 합리적이고 경제적인 부하운용을 위해 사용될 수 있을 것이다.

회생에너지 저장시스템이 제동 브랜딩 안정화에 미치는 영향 (The Effect of Regenerative Energy Storage System on Stabilization of Electro-Pneumatic Braking Blending)

  • 김규중;이근오
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.15-21
    • /
    • 2010
  • Regenerative Energy Storage System(ESS) is a system that saves regenerative energy which generated instantly in the regenerative braking of Electric Multiple Unit(EMU) and disappear, and reuse the stored energy when EMU is in powering. Such system related to a research field of renewable energy which emerged concerning climate change and high oil prices. In the case of existing domestic rolling stock, about 25% to 30% of generated regenerative energy is restored to power source and is regarded as direct factor of raising catenary voltage. Such rapid change of catenary voltage is a cause of the failure of EMU's electronic equipment and lowering its reliability and is also a cause of train's fault occurred by tripping circuit breaker. In this paper, we intend to investigate the effect on blending characteristics of electric-braking and pneumatic-braking whether the regenerative energy storage system is used or not in urban transit DC 1,500V feeding system, while trains run. And we also intend to investigate its effect on stabilization of the blending, fluctuation of catenary voltage and various electric equipments.

HVDC 시스템의 주파수 신호검출 위치 변경에 따른 새로운 주파수 제어기 특성 연구 (A Study on the Characteristics of New Frequency Controller According to Changing the Frequency Measurement Position of HVDC System)

  • 김찬기;한병성;박종광
    • 전력전자학회논문지
    • /
    • 제10권5호
    • /
    • pp.457-467
    • /
    • 2005
  • 본 논문은 해남에서 제주로 연결되어 운전중인 HVDC 시스템의 새로운 주파수 제어기에 대하여 연구하였다. 연구의 첫 번째 목적은 현재의 동기조상기를 제거하기 위하여 새로운 주파수 제어기를 개발하고, 평가를 수행하는 것이다. 모의실험 케이스를 만들기 위하여 PSCAD/EMTDC와 PSS/E를 혼합하여 사용하였고 주 시스템 연구는 과도상태 분석을 위하여 PSCAD/EMTDC을 사용하였다. 연구 케이스는 3상과 1상 지락 그리고 부하탈락에 대한 사고를 모의하였고 연구결과를 나타내었다. 결론적으로 AC 네트워크로부터 검출되는 새로운 주파수 측정 방법은 유효한 주파수 제어와 동적 성능을 나타냄을 알 수 있었다.

Resonance Investigation and Active Damping Method for VSC-HVDC Transmission Systems under Unbalanced Faults

  • Tang, Xin;Zhan, Ruoshui;Xi, Yanhui;Xu, Xianyong
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1467-1476
    • /
    • 2019
  • Grid unbalanced faults can cause core saturation of power transformer and produce lower-order harmonics. These issues increase the electrical stress of power electronic devices and can cause a tripping of an entire HVDC system. In this paper, based on the positive-sequence and negative-sequence impedance model of a VSC-HVDC system as seen from the point of common connection (PCC), the resonance problem is analyzed and the factors determining the resonant frequency are obtained. Furthermore, to suppress over-voltage and over-current during resonance, a novel method using a virtual harmonic resistor is proposed. The virtual harmonic resistor emulates the role of a resistor connected in series with the commutating inductor without influencing the active and reactive power control. Simulation results in PSCAD/EMTDC show that the proposed control strategy can suppress resonant over-voltage and over-current. In addition, it can be seen that the proposed strategy improves the safety of the VSC-HVDC system under unbalanced faults.

에어챔버가 설치된 가압펌프 계통에서의 수격현상 (Water Hammer in the Pump Pipeline System with an Air Chamber)

  • 김상균;이계복
    • 에너지공학
    • /
    • 제16권4호
    • /
    • pp.187-193
    • /
    • 2007
  • 갑작스런 펌프 정지로 야기되는 수격현상은 과압이나 부압을 일으킬 수 있다. 과압을 줄이거나 부압을 방지하는 것은 계통설비의 피로를 피하고 작동효율을 향상시키기 위해 필요하다. 에어챔버가 설치된 펌프 관로 계에서 수격현상에 대한 현장시험을 수행하였다 또한 특성 곡선법을 사용하여 과도현상에 대한 수치해석을 수행하였다. 계통에 대한 헌장시험과 수치해석 결과를 비교하여 수치해석코드에 사용되는 주요 입력변수인 폴리트로픽 지수, 유량계수, 압력파의 속도에 대한 보정값 검증과 민감도 분석을 수행하였다. 수격현상을 최소화할 수 있는 에어챔버의 크기와 관련 변수의 영향이 현장시험과 수치해석을 통해 연구되었다.

장애물 높이가 파킨슨 환자들의 장애물 보행에 미치는 영향 (The Effects of Obstacle Height on the Stepping Over Gait in Parkinson's Patients)

  • 김미영;임비오
    • 한국운동역학회지
    • /
    • 제18권2호
    • /
    • pp.11-17
    • /
    • 2008
  • 파킨슨 환자들이 장애물에 걸려서 넘어지는 것은 위험한데, 아직까지 이와 관련된 연구는 미비한 실정이다. 본 연구의 목적은 장애물 보행을 성공적으로 수행한 5명을 대상으로, 4가지 높이(0, 2.5, 5.2, 15.2cm)의 장애물을 넘을 때 나타나는 보행 특성의 차이를 밝히는 것이다. 연구결과, 파킨슨 환자들은 장애물 높이가 높아질수록 장애물에 더 천천히 접근하였으며, 장애물의 높이가 높을수록 발이 장애물에 걸리지 않도록 더 높이 발을 들어 넘었다. 또한, 파킨슨 환자들은 장애물의 높이가 높을수록 더 안정되게 넘기 위해서 좌.우발 사이의 거리를 넓게 해서 넘었다. 파킨슨 환자들은 각 장애물별로 넘는 속도를 일정하게 하고, 장애물을 넘기 전 왼발 앞꿈치와 장애물과의 수평거리 및 장애물과 장애물을 넘은 오른발 뒷꿈치와의 수평거리에서 차이가 없이 장애물을 넘었다. 이와 같은 특성이 파킨슨 환자들이 장애물을 넘는 일반적인 전략인 것으로 판단된다. 결론적으로 파킨슨 환자들은 장애물을 천천히, 조심스럽게, 그리고 비효율적으로 넘는 것으로 나타났다.

RCD와 SPD의 접속 위치에 따른 보호협조 (Protection Coordination Associated with Connection Location of Residual Current Devices and Surge Protective Devices)

  • 이복희;박희열;신건진;배관영;류춘형;이강희
    • 조명전기설비학회논문지
    • /
    • 제27권3호
    • /
    • pp.100-106
    • /
    • 2013
  • In this paper, in order to analyze lightning impulse response characteristics in combined installations of SPDs and RCDs, surge protection coordination between SPDs and RCDs are experimentally investigated by using the combination wave generator. Six different types of single-phase residual current operated circuit-breakers with integral overcurrent protection for household and similar uses(RCBOs) being present on the domestic market are tested according to KS C IEC 61009-1 standard. As a result, when a class I SPD is located on the source side of an RCBO, all kinds of specimens are able to provide the proper coordination between the SPD and RCBOs without nuisance tripping, unintended operation or damage due to test impulse currents. However, in the case that the class II SPD is located on the load side of RCBOs, a lot of L-N mode injected currents is split into the RCBO, and a few RCBOs are damaged. Coordination between SPDs and RCDs is not valid and a role of SPDs is of no use. When combining SPDs with RCDs, it is necessary to select SPDs and RCDs in consideration of the protection voltage level of metal oxide varistor embedded in RCDs.

설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012)

  • 한화택;이대영;김사량;김현정;최종민;박준석;김수민
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.