• 제목/요약/키워드: Tripod joint

검색결과 21건 처리시간 0.024초

자동차용 등속조인트의 Axial Force와 Vehicle Shudder(II) (A Study on the vehicle Shudder Associated with Axial Force of Tripod Joint For Automobile)

  • 오승탁
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.53-63
    • /
    • 1997
  • This study examines the influence of some dimensional errors on the shudder-type disturbance of the tripod joint and vehicle, using an experimental evaluation and related simulation. With the introduction of the concept of influence factor, the sensitivities of shudder-type disturbance can be evaluated as the ratio of the difference between the ideal value without dimensional errors and actual value with them in the tripod joint and vehicle. Futhermore, influence factors calculated in this study can be utilized as a basic design data for the practical application of the tripod joint to an automobile design.

  • PDF

육각 보행 로봇의 내고장성 세다리 걸음새 (Fault-Tolerant Tripod Gaits for Hexapod Robots)

  • 양정민;노지명
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권12호
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

교착 회피를 고려한 내고장성 세다리 걸음새 (Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance)

  • 노지명;양정민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

트라이포드 타입 등속조인트의 다물체 동역학 해석 (Multi-body Dynamic Analysis for Tripod Constant Velocity Joint)

  • 송명의;임영훈;조희제;배대성
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2010
  • The paper proposes a multi-body dynamic simulation to numerically evaluate the generated axial force(G.A.F) and plunging resistant force(P.R.F) practically related to the shudder and idling vibration of an automobile. A numerical analysis of two plunging types of CV joints, tripod joint(TJ) and very low axial tripod joint(VTJ), is conducted using the commercial program DAFUL. User-defined subroutines of a friction model illustrating the contacted parts of the outboard and inboard joint are subsequently developed to overcome the numerical instability and improve the solution performance. The Coulomb friction effect is applied to describe the contact models of the lubricated parts in the rolling and sliding mechanisms. The numerical results, in accordance with the joint articulation angle variation, are validated with experimentation. The offset between spider and tulip housing is demonstrated to be the critical role in producing the 3rd order component of the axial force that potentially causes the noise and vibration in vehicle. The VTJ shows an excellent behavior for the shudder when compared with TJ. In addition, a flexible nonlinear contact analysis coupled with rigid multi-body dynamics is also performed to show the dynamic strength characteristics of the rollers, housing, and spider.

등속조인트 방식에 따른 공회전 진동특성 연구 (A Study on the Characteristics of Idle Vibration due to the Type of Constant Velocity Joints)

  • 사종성;신양현;강태원;김찬묵
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.183-190
    • /
    • 2008
  • This paper deals with the characteristics of idle vibration due to the type of constant velocity joints. Based on the kinematics model of constant velocity joints, a offset between the tripod center and tullip center plays a important role in generating unwelcome forces. Moreover, it induced additional forces in lateral direction of a vehicle movement according to the angle of the spider in idle vibration. The difference of mass for each constant velocity joint types affect the natural frequency of the driveshaft and the powertrain. When the static torque is applied to the constant velocity joints, the natural frequencies of the driveshaft are reduced nearby 50Hz. There will be a big opportunity that the dirveshaft and constant velocity joints would be a transfer path of idle vibration at D or R gear range. Experiments indicate that TJ type is better than SFJ and DOJ in idle vibration.

대형 난성형 부품의 냉간단조기술 (Cold Forging Technology of large-sized and complicated parts)

  • 이영선;김영광;이정환;정형식;김영수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.135-144
    • /
    • 1995
  • Cold Forging has advantage in high accuracy and short working time. However large-skzed and complicated parts are difficult to process with cold forging. Thus large-sized and complicated parts have been processed with two pieces, or combind forging that is hot forging in addition to cold sizing. Recently, large-sized and complicated parts can be manufactured with cold forging alone by advanced cold forging technology using the long-stroke press. In this paper, cold forging technology of large-sized and complicated parts are investigated, including tripod slide housing for constant velocity joint and drive shaft for starter.

사판식 피스톤 모터의 트라이포드 기구의 거동 특성 연구 (A Study on the Characteristics of Behavior of Tripod Mechanism in Swashplate Type Piston Motor)

  • 함영복;하정훈;박경민;김성동
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.36-41
    • /
    • 2002
  • A swashplate type piston motor with a tripod joints is introduced to improve compactness and starting torque in conventional types of motor. If the driving torque of motor shaft is transmitted by utilizing the mechanism, its friction torque loss would be drastically reduced and mechanical efficiency would be improved because the lateral force on the piston of the rod type motor with tripod joints mechanism is relatively smaller than that of the conventional plunger type motor. In particular, kinematics analysis for the mechanism are done as a preliminary study to investigate the feasibility of the mechanism in the axial piston motor. General formulas are derived from the displacement and velocity analysis of the mechanism, showing relationships between output shaft and shoe holder motion. A series of numerical calculations are carried out for a medium size motor with 160cc/rev using the formulas and their graphical plots are shown as well.

  • PDF

고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구 (Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train)

  • 이주홍;김도식;남태연;이태영;조해용
    • 대한기계학회논문집A
    • /
    • 제40권11호
    • /
    • pp.979-986
    • /
    • 2016
  • 등속조인트의 일종인 트리포드 축은 동력전달용으로 고속열차의 KTX와 KTX-산천에 모두 적용되고 있으며, 동력대차에서 모터 감속장치(MRU)와 차축 감속장치(ARU)를 연결해 고속회전동력을 전달하는 핵심 요소이다. 축 방향의 미끄럼 운동이 가능한 트리포드 축은 열차 구동을 위한 토크를 전달하며, 동력전달 시스템에 과토크 발생 시 축의 퓨즈부가 절단되어 동력을 차단한다. 본 연구에서는 리니어 액추에이터를 이용한 대용량 비틀림 시험장치의 개발과 이를 이용한 트리포드 축의 정적 비틀림 강도와 피로수명을 확인하고자 하였다. 또한 구조해석을 통해 축의 취약부를 파악하고 비틀림 피로해석 결과와 실제 피로시험의 결과를 비교분석하여 비틀림 성능 개선을 위한 설계안을 제시하고자 하였다. 한편 트리포드 축의 피로에 따른 열화를 파악하기 위해 히스테리시스 곡선을 이용하였으며, 히스테리시스 곡선의 기울기 변화를 통해 피로고장 시점을 확인하였다.

실험계획법을 활용한 승용차용 등속조인트 설계기법 연구 (Study on the Design Methodology of Constant Velocity Joints for Passenger Cars using DOE)

  • 정창현;정도현;배원락
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.121-133
    • /
    • 2008
  • We presented design methodology of constant velocity joint for passenger cars using design of experiment. On the basis of contact normal stress of internal components of constant velocity joints, we performed a sensitivity analysis of several design parameters. And then we performed robust design and optimization design process. As a result, we could find robust design and also propose the optimized design. Presented design process would be very helpful for engineers who are suffer for new constant velocity joint design.

6족 보행로봇에 관한 기초연구 (A Basic Study of Hexapod Walking Robot)

  • 강동현;민영봉;반전훈구;매전간웅
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.339-347
    • /
    • 2007
  • A hexapod walking robot had been developed for gathering information in the field. The developed robot was $260{\times}260{\times}130$ ($W{\times}L{\times}H$, mm) in size and 14.7 N in weight. The legs had nineteen degrees of freedom. A leg has three rotational joints actuated by small servomotors. Two servomotors placed at ankle and knee played the roles of vertical joint for up and down motions of the leg and the other one placed at coxa played the role of horizontal joint for forward and backward motions. In addition, a servomotor placed at thorax between the front legs and the middle legs played the role of vertical joint for pumping the two front legs to climb stair or inclination. Walking motion of the robot was executed by tripod gait. The robot was controlled by manual remote-controller communicated by an infrared ray. Two controllers were equipped to control the walking of the robot. The sub-controller using PIC microcomputer (Microchips, PIC16F84A) received the 16 bit command signal from the manual remote controller, decoded it to 8bit and transmitted it to the main microcomputer (RENESAS, SH2/7045), which controlled the 19 servomotors using the PWM command signals. Walking speeds were controlled by adjusting the period of command cycle and the stride. Forward walking speed were within 100 cm/min to 300 cm/min. However, experimental walking speed had the error of 4-40 cm/min to compare with the theoretical one, because of slippage of the leg and the circular arc motion of servomotor of coxa.