• 제목/요약/키워드: Trip analysis

검색결과 524건 처리시간 0.033초

저압 30AF 차단기의 순시 Trip동작 특성시험 및 분석 (A Test and Analysis of Instantaneous Trip Characteristics of Low Voltage 30AF Circuit Breakers)

  • 김주철;이상중
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.364-367
    • /
    • 2009
  • 현재 국내에서 제조되는 저압 30AF(Ampere Frame) 소형 차단기의 경우 선로 단락사고 시 특성에 따라 순시 (Instantaneous) 동작이 다르게 반응함으로써 정전범위 확대, 정격단락차단용량(Rated short-circuit breaking capacities) 초과로 인한 폭발 및 Trip시 Arc방출 등 많은 문제점을 보이고 있다. 최종부하의 전단에 설치되는 저압차단기(Low voltage circuit-breakers)는 그 기능 및 역할이 큰 만큼 안전성을 중대시키는 것이 매우 중요하다. 본 논문은 국내에서 제조되는 30AF 소형 차단기의 사고유형과 제조사별 순시 Trip 동작속도의 시험 data를 확보하여 이를 분석하였다. 이는 향후 저압차단기의 안전에 관한 규격개정에 활용될 수 있을 것으로 사료된다.

  • PDF

서울대도시권의 공간상호작용 변화와 시공간 패턴 (The Changes and Time-Space Patterns of Spatial Interaction in Seoul Metropolitan Area)

  • 손승호
    • 대한지리학회지
    • /
    • 제42권3호
    • /
    • pp.421-433
    • /
    • 2007
  • 대도시권은 인구나 경제활동이 주변지역으로 재배치됨에 따라 주변지역에서 새로운 중심지가 형성되는 패턴으로 변화하고 있다. 중심도시와 주변지역의 중심성 변화는 대도시권에서 발생하는 공간상호작용의 패턴을 변화시킨다. 본고에서는 서울대도시권의 통근통학통행을 통하여 공간상호작용의 변화 패턴을 고찰하였다. 서울과 접한 지역에서는 역외통행의 비중이 감소하고 있는 반면, 서울로부터 거리가 먼 지역에서는 역외통행의 비중이 증가하고 있다. 그리고 시간이 흐름에 따라 역외로 유출되는 최대통행의 목적지 분포가 점차 다원화하고 있으며, 서울 주변지역에서 서울을 목적지로 하는 역외통행률 또한 감소추세를 나타내었다. 서울대 도시권의 상호작용 변화는 대체로 인접한 지역들간에 강하게 이루어졌으며, 중심도시인 서울에서 유출되는 역외통행의 변화가 현저하였다. 통행량의 증감에 따른 상호작용변화의 유사성 분석에서는 용인 서울 수원 화성 등지가 상호작용변화의 속성을 뚜렷하게 보여주었다.

빅데이터 기반의 모빌리티 분석 (A Trip Mobility Analysis using Big Data)

  • 조범철;김주영;김동호
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.85-95
    • /
    • 2020
  • 본 연구에서는 통신 데이터를 이용하여 기종점통행량 등 교통 모빌리티를 분석하는 방법론을 제안하였다. 모바일 기지국 위치정보 기반의 통신 데이터를 이용하여 개인의 통행사슬(Trip Chain) DB를 구축하고 일별 통행 패턴을 추출하여 통행 특성을 분석하였다. 분석의 신뢰성 제고를 위해서 기지국의 영향권을 맵 매칭하고, 통신 데이터가 가지는 Ping pong Handover 문제를 보정하는 로직을 개발하였으며, 기지국 영향권 내에서 Pass By와 Stay를 구분하는 분석기준을 제안하였다. 개발된 분석 방법을 활용하여 전국 지역 간 통행, 도시 및 지방 지역의 통행 발생과 분포를 추정하고 기존의 전통적인 분석방법론과 비교 검증하였다.

Zone특성 분할을 통한 유형별 통행발생 모형개발 (Development of Trip Generation Type Models toward Traffic Zone Characteristics)

  • 김태호;노정현;김영일;오영택
    • 한국도로학회논문집
    • /
    • 제12권4호
    • /
    • pp.93-100
    • /
    • 2010
  • 통행발생은 4단계 모형의 처음 단계로 전체수요예측에 상당한 영향을 미치게 되므로 정확성이 무엇보다 필요한 단계라 할 수 있다. 현재 통행발생모형으로 도시교통 및 SOC시설 등의 계획에 널리 사용되고 있는 것은 선형회귀모형이며, 각종 사회경제지표와 통행발생량의 관계가 선형임을 전제로 한다. 하지만 급격한 도시개발이나 도시계획구조가 변경되었을 때 통행량을 추정하기 위한 사회경제지표 자료가 부족하여 추정된 통행량의 오차가 많을 수 있다. 이에 본 연구는 일반적으로 널리 사용되는 사회경제지표를 선형이란 가정을 하지 않고, 다양한 존의 특성을 반영할 수 있는 변수에 대한 시장분할을 토대로 새로운 유형별 통행발생모형을 개발하고자 한다. 본 연구에서는 교통수요예측의 처음 단계인 통행발생 모형의 예측력을 개선하기 위하여 존의 다양한 특성(토지이용, 사회경제적 등)을 고려하였다. 예측력 개선을 위한 시장분할 방법론으로는 통행 발생률을 기반으로 한 Data Mining(CART)방법과 회귀분석을 이용하였다. 연구의 결과를 살펴보면, 첫째, CART분석을 활용한 존 특성 분석결과, 유출통행은 사회경제적 요인(남녀상대비중, 연령대(22~29세))에 영향을 받고 있으며, 유입통행은 토지이용 요인(업무시설상대비중), 사회경제적 요인(3차 종사자상대비중)으로 나타났다. 둘째, 유형별 모형개발 결과 통행발생 계수 값은 유출의 경우 0.977~0.987(통행/인)이며, 유입의 경우 0.692~3.256(통행/인)로 나타나 유형구분이 필요한 것으로 나타났다. 셋째, 실측검증을 수행하였으며, 유출 및 유입의 경우 기존 모형보다 적합도가 높아진 것을 알 수 있다. 따라서 본 연구에서 개발한 유형별 통행발생모형이 기존 연구보다 우수한 것을 알 수 있었다.

자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구 (Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications)

  • 최철영;김인배;김양도;박영도
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Round-Trip Time 측정을 통한 인터넷 트래픽의 자기 유사성 분석 (Analysis of internet self-similar traffic through the round-trip time measurement)

  • 황인수;송기평;이동철;박기식;김창호;김동일;최삼길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.326-330
    • /
    • 1999
  • 인터넷의 민감한 트래픽 특성으로 인해 기존의 트래픽 모델링 분석법으로 최적화된 네트워크 환경을 구성하기에는 부족한 점이 많다. 본 논문에서는 트래픽의 버스트 특성을 정확히 예측하고 모델링 하기 위한 방법으로 자기 유사 특성에 대해 분석하고자 한다. 실제 인터넷 네트워크에서의 RTT(Round-Trip Time)를 측정함으로써 계층, 거리별 링크간의 LRD(Long-Range Dependence) 와 노드 큐의 특성, 자기유사성 정도를 구하고 측정된 데이터의 확률 분포를 통해 실제 트래픽의 특성에 대해 분석하였다

  • PDF

배전계통에 초전도한류기 적용시 전압요소를 이용한 과전류계전기 정정 연구 (Study on the OCR Setting Using the Voltage Component Considering Application of the SFCL in a Power Distribution System)

  • 임승택;임성훈
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1587-1594
    • /
    • 2018
  • In south korea, the government make a plan to generate the 20% of the total electrical power as renewable source like wind generation and solar generation. This plan will accelerate the increase of fault current with power industry's growth. As the increase of fault current, the superconducting fault current limiter (SFCL) has been studied. In case that the SFCL is applied in power system, it can cause the overcurrent relay (OCR)'s trip delay because of the reduced fault current. In this paper, the overcurrent relay with voltage component was suggested to improve the OCR's trip delay caused by the SFCL and compensational constant was introduced to have the trip time similar to the trip time of case without the SFCL. For conforming the effect of the suggested OCR with voltage component, the PSCAD/EMTDC simulation modeling and analysis were conducted. Through the simulation, it was conformed that the trip delay could be improved by using the suggested OCR and compensational constant.

대용량 교통카드 트랜잭션 데이터베이스에서 통행 패턴 탐사와 통행 행태의 분석 (Mining Trip Patterns in the Large Trip-Transaction Database and Analysis of Travel Behavior)

  • 박종수;이금숙
    • 한국경제지리학회지
    • /
    • 제10권1호
    • /
    • pp.44-63
    • /
    • 2007
  • 이 논문은 대용량의 교통카드 트랜잭션 데이터베이스에서 통행패턴을 찾아내는 데이터 마이닝 방법의 개발에 초점을 두었으며, 결과로 도출된 통행패턴의 공간적 특징과 시점 간 차이를 분석하였다. 특히 대용량 데이터베이스에서 요구하는 지식을 효과적으로 발굴해 내는 순회 패턴 탐사법을 원용하여 통행패턴분석에 적절한 데이터 마이닝 알고리즘을 개발하여 2004년 이후 2006년 까지 3개년의 하루 교통카드 자료에 적용하였다. 또한 통행 순차 데이터베이스에서 오전 출근 시간대, 낮 시간대, 저녁 퇴근 시간대의 출발 정류장과 도착 정류장에 대한 통행 수요를 산출하여 시간대별 통행패턴의 공간 특징을 분석하였다.

  • PDF

통행분포/수단선택 통합모형 및 민감도분석 (Integrated Trip Distribution/Mode Choice Model and Sensitivity Analysis)

  • 임용택
    • 대한교통학회지
    • /
    • 제29권2호
    • /
    • pp.81-89
    • /
    • 2011
  • 통행분포(trip distribution)는 4단계 통행수요추정의 첫 단계인 통행발생(trip generation)에서 구해진 통행생성(trip production)과 통행 유인(trip attraction)을 연결시키는 작업이다. 즉 하나의 존에서 생성 또는 유인되는 통행량을 다른 존에 분포시키는 과정이다. 이에 반해, 통행수단선택(transport mode choice)은 통행자들이 어떤 교통수단을 선택할 것인지를 결정하는 단계이다. 그러나, 이들 통행분포단계와 통행수단선택단계는 서로 밀접한 관계가 있음에도 불구하고, 서로 독립적으로 수행되어온 경향이 있었다. 본 연구에서는 통행분포단계와 통행수단선택단계를 통합한 모형을 제시하고 이를 풀기 위한 알고리듬도 제시한다. 통합모형의 통행분포모형으로는 중력모형(gravity model)을 적용되며, 수단선택모형으로는 로짓모형(logit model)을 이용한다. 본 연구의 통합모형은 각 단계별로 개별적으로 진행되는 추정단계가 하나의 모형 틀 안에서 통합적으로 이루어져 좀 더 현실적이며, 통행비용의 불일치 문제가 해소될 수 있다. 또한, 통합모형에서도 균형조건(equilibrium condition)이 존재함을 증명하며, 통합모형의 민감도 분석을 통하여 기존 모형과의 차이점을 설명한다.