• Title/Summary/Keyword: Triggered Earthquake

Search Result 30, Processing Time 0.033 seconds

CURRENT ISSUES ON PRA REGARDING SEISMIC AND TSUNAMI EVENTS AT MULTI UNITS AND SITES BASED ON LESSONS LEARNED FROM TOHOKU EARTHQUAKE/TSUNAMI

  • Ebisawa, Katsumi;Fujita, Masatoshi;Iwabuchi, Yoko;Sugino, Hideharu
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.437-452
    • /
    • 2012
  • The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Dai-ichi NPP (F1-NPP) were overwhelmed by the tsunami and core damage occurred. This paper describes the overview of F1-NPP accident and the usability of tsunami PRA at Tohoku earthquake. The paper makes reference to the following current issues: influence on seismic hazard of gigantic aftershocks and triggered earthquakes, concepts for evaluating core damage frequency considering common cause failure with correlation coefficient against seismic event at multi units and sites, and concepts of "seismic-tsunami PSA" considering a combination of seismic motion and tsunami effects.

921 Taiwan Earthquake

  • Chow, Ting
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.17-17
    • /
    • 2000
  • A magnitude of 7.3 in Richter scale earthquake the strongest in-land earthquake in hundred years struck central Taiwan on September 21, 1999. It caused over 2,400 deaths and 30 some trillion won losses. To give an overview of this devastating earthquake this presentation will cover the following topics: 1) Introduction to Taiwan historical and 921 earthquake. 2) Damages to people landslide building dam bridge tank power facility etc. 3) Strong motion data and its characteristics. 4) Some changes to the building code triggered by the experience of the earthquake. Finally a concluding remark will be made.

  • PDF

Geospatial Technologies for Landslide Inventory: Application and Analysis to Earthquake-Triggered Landslide of Sindhupalchowk, Nepal

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.95-106
    • /
    • 2016
  • Landslide is one of the natural hazards, triggered by rainfall or earthquake and it leads to damage and loss of properties and lives especially in hilly and mountainous regions. Inventory maps of the area is of much importance in order to understand the landslide phenomena in detail, conduct further studies on landslide, prepare susceptibility map and minimize risk. Inventory maps of landslides can be constructed by several methods, using multiple images through visual interpretation, using algorithms in multi-spectral or SAR images or verification from field investigation. The possible methods were explored for Sindhupalchowk district of Nepal, which was struck by massive earthquake on 2015 and landslide inventory was prepared. The inventory was analyzed for its frequency over elevation, slope aspect and dominant soil classes and also the information value for their occurrence probability.

Development and distribution of geo-hazards triggered by the 5.12 Wenchuan Earthquake in China

  • Runqiu, Huang;Weile, Li
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1225-1234
    • /
    • 2009
  • As the Wenchuan Earthquake was of high magnitude and shallow seismic focus, it caused great damage and serious geo-hazards. By the field investigation and remote-sensing interpretation after the earthquake and by using means of GIS, the distribution of geo-hazards triggered by the earthquake was analyzed and the conclusions are as follows: (1) the earthquake geo-hazards showed the feature of zonal distribution along the earthquake fault zone and linear distribution along the rivers; (2) the distribution of earthquake geo-hazards had a marked hanging wall effect, for the development density of geo-hazards in the hanging wall of earthquake fault was obviously higher than that in the foot wall and the width of strong development zone in the hanging wall was about 10 km; (3) the topographical slope was a main factor which controlled the development of earthquake geo-hazards and a vast majority of geo-hazards were distributed on the slopes of 20 to 50 degrees; (4) the earthquake geo-hazards had a corresponding relationship with the elevation and micro-landform, for most hazards happened in the river valleys and canyon sections below the elevation of 1500 to 2000 m, particularly in the upper segment of canyon sections (namely, the turning point from the dale to the canyon). Thin ridge, isolated or full-face space mountains were most sensitive to the seismic wave, and had a striking amplifying effect. In these areas, collapses and landslides were most likely to develop; (5) the study also showed that different lithologies determined the types of geo-hazards, and usually, landslides occurred in soft rocks, while collapses occurred in hard rocks.

  • PDF

Initial Free Surface Profile of Tsunamis by Earthquake Parameters (지진 매개변수에 따른 지진해일 초기 수면)

  • Cho, Yong-Sik;Kim, Jae-Hong;Sohn, Dae-Hee;Kim, Sung-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.61-68
    • /
    • 2006
  • The earthquake parameters are known to be responsible for determination of the initial free surface profiles of tsunamis. This study investigates the effects of earthquake parameters to variation of initial free surface profiles of tsunamis triggered by an impulsive undersea earthquake. The target event is the 1983 Central East Sea Tsunami recorded as the most devastating tsunami in Korea during last several decades. Among the earthquake parameters, the strike angle may play a most significant role in determining the initial free surface.

Characteristics of Damaging Earthquakes Occurred in Seoul Metropolitan Area for the Last Two Thousand Years (과거 2000년간 서울 및 수도권에서 발생한 피해 지진의 특성)

  • Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.637-644
    • /
    • 2012
  • The Seoul metropolitan area is densely populated with 40 percent of Korean people and quite weak to the seismic hazard. According to the analysis of historical documents, the largest earthquake occurred in this area is MMI VIII-IX acompanying with a large shaking, collapse of stone walls, collapse of houses, and many casualties. Two times of damaging earthquakes occurred in the first century (A.D. 27, 89), and there was a long quiet period of about 1430 years. Another big earthquakes re-occurred three times in the 16-17 century (1518, 1613, 1692) and then a quiet period has continued to the present time. Just after Seoul earthquake in 1518, aftershocks occurred almost 19 days consecutively and many triggered earthquakes occurred not only in Seoul metropolitan area but also in Hwanghae province, northern Korea. It indicates that the largest potential earthquake in and around Seoul is MMI VIII-IX with a long occurrence period of about 1400-1500 years.

Situating the Anthropocene: The Social Construction of the Pohang 'Triggered' Earthquake (인류세 맥락화하기: 포항 '촉발지진'의 사회적 구성)

  • KIM, Kiheung
    • Journal of Science and Technology Studies
    • /
    • v.19 no.3
    • /
    • pp.51-117
    • /
    • 2019
  • On 15th November 2017, the coastal city of Pohang, located in the Southeastern part of South Korea was shaken by a magnitude 5.4 earthquake. The earthquake displaced more than 1,700 residents and caused more than $ 300 million dollars of economic loss. It was the second most damaging earthquake in the history of Korea. Soon after the earthquake, a group of scientists raised a possible link between the first Enhanced Geothermal System (EGS) project and the earthquake. At the same time, another group of scientists put forward a different hypothesis of the causation of the earthquake claiming that it was caused by the geological movements that were initiated by the Great Tohoku Earthquake in 2011. Since then, there were scientific debates between the two different groups of scientists. The scientific debate on the causation of the earthquake has been concluded temporarily by the Research Investigatory Committee on the Pohang Earthquake in 2019. The research committee concluded that the earthquake was caused by the Pohang EGS system: this means that the earthquake can be defined not as a natural earthquake, but as an artificially triggered earthquake. This article is to examine the Pohang earthquake can be defined as an Anthropocenic event. The newly suggested concept, the Anthropocene is a relatively novel term to classify the earthly strata and their relationship to geological time. The current geological period should be defined by human activities and man-made earthly environment. Although the term is basically related to geological classification, the Anthropocene has been widely debated amongst humanist and social science scholars. The current disastrous situation of our planet also implies with the Anthropocene. This paper is to discuss how to understand anthropogenic events. In particular, the paper pays attention to two different scholarly positions on the Anthropocene: Isabelle Stenger's Gaia theory and Barbara Herrnstein Smith's relativist theory. The former focuses on the earthly inevitable catastrophe of Anthropocene while the latter suggests to situate and contextualise anthropogenic events. On the basis of the theoretical positions, the article is to analyse how the Pohang earthquake can be located and situated.

Disasters in eastern Japan by the 2011 off the Pacific coast of Tohoku earthquake and ensuing tsunami

  • Shiiba, Michiharu;Yoshitani, Junichi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.7-7
    • /
    • 2011
  • On March 11 in 2011, off the Pacific coast of Tohokua huge earthquake of Magnitude 9.0 occurred. This presentation reports the earthquake, the ensuing tsunami and the devastating damages caused by them. The epicenter was approximately 72 km east of the Oshika Peninsula of Tohoku, with the hypo-center at an underwater depth of approximately 32 km. Owing to this earthquake, strong quakes were observed in eastern Japan with the levels 6 and 7 on the Japanese scale. The earthquake triggered extremely destructive tsunami wave, which attacked the very wide range of eastern Japan coast. The earthquake and ensuing tsunami caused severe damage to levees and embankment along the coasts and rivers. Those water-related damages are reported in this presentation. The Fukushima No. 1 Nuclear Power Plant was also damaged by the earthquake and ensuing tsunami. From the crippled nuclear power plant, appreciable quantities of radioactive material were emitted to the surrounding environment. Those substances which emitted to air may fall on the ground together with raindrops and runoff to rivers. Elucidation of those processes is the task which our hydrological society should undertake.

  • PDF

Evaluation of the relationship between maximum tsunami heights and fault parameters in Korea

  • Song, Min-Jong;Kim, Chang Hee;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.275-275
    • /
    • 2022
  • Tsunamis triggered by undersea earthquakes have the characteristic of longer wavelengths and can propagate a very long distance. Although the occurrence frequency of tsunami is low, it can cause casualties and properties. Historically, tsunamis that occurred on the western coast of Japan attacked the eastern coast of the Korean Peninsula and damaged the property and the loss of human life in 1983 and 1993. By tsunami in 1983 especially, 2 people were killed, and more than 200 casualties occurred. In addition, it caused 2 million dollars in property damage at Imwon Port. In 2011, The eastern cities of Japan: Iwate, Miyagi, Ibaraki, and Fukushima were damaged by a tsunami that occurred near onshore along the Pacific ocean and caused more than 300 billion dollars in property damage, and 20,000 casualties occurred. Moreover, those provoked nuclear power plant meltdown at Fukushima. In this study, it was carried out a relationship between maximum tsunami heights and fault parameters of earthquake: strike angle, dip angle, and slip angle at Imwon port. Those fault parameters are known that it does not relate to the magnitude of earthquake directly. Virtual tsunamis, which could be triggered by probable undersea earthquakes in the future, were investigated and mutual information based on probability and information theory was introduced to figure out the relationship between maximum tsunami height and fault parameters. Fault parameters were evaluated according to the strong relationship with maximum tsunami heights finally.

  • PDF

Landslide Susceptibility Mapping for 2015 Earthquake Region of Sindhupalchowk, Nepal using Frequency Ratio

  • Yang, In Tae;Acharya, Tri Dev;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.443-451
    • /
    • 2016
  • Globally, landslides triggered by natural or human activities have resulted in enormous damage to both property and life. Recent climatic changes and anthropogenic activities have increased the number of occurrence of these disasters. Despite many researches, there is no standard method that can produce reliable prediction. This article discusses the process of landslide susceptibility mapping using various methods in current literatures and applies the FR (Frequency Ratio) method to develop a susceptibility map for the 2015 earthquake region of Sindhupalchowk, Nepal. The complete mapping process describes importance of selection of area, and controlling factors, widespread techniques of modelling and accuracy assessment tools. The FR derived for various controlling factors available were calculated using pre- and post- earthquake landslide events in the study area and the ratio was used to develop susceptibility map. Understanding the process could help in better future application process and producing better accuracy results. And the resulting map is valuable for the local general and authorities for prevention and decision making tasks for landslide disasters.